Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Curr Issues Mol Biol ; 44(5): 2300-2308, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35678685

RESUMEN

Psoralea corylifolia L. (P. corylifolia) has been used as an oriental phytomedicine to treat coldness of hands and feet in bone marrow injury. Hydroxyapatite is usually used for tooth regeneration. In this study, the role of P. corylifolia and bakuchiol, a compound originated from P. corylifolia as differentiation-inducing substances for tooth regeneration, was determined by monitoring odontogenic differentiation in human dental pulp stem cells (hDPSCs). We confirmed that P. corylifolia extracts and bakuchiol increased the odontogenic differentiation of hDPSCs. In addition, the expression of the odontogenic differentiation marker genes alkaline phosphatase (APL), Runt-related transcription factor 2 (RUNX-2), osteocalcin (OC), and dentin matrix acidic phosphoprotein-1 (DMP-1) was proved by real-time polymerase chain reaction, and protein expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) was proved by western blotting. Further, by confirming the increase in small mothers against decapentaplegia (SMAD) 1/5/8 phosphorylation, the SMAD signaling pathway was found to increase the differentiation of odontoblasts. This study confirmed that P. corylifolia L. extracts and bakuchiol alone promote odontogenic differentiation in hDPSCs. These results suggest that bakuchiol from P. corylifolia is responsible for odontogenic differentiation, and they encourage future in vivo studies on dentin regeneration.

2.
Curr Issues Mol Biol ; 44(8): 3324-3334, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892715

RESUMEN

Oral cancer is a malignant neoplasm of oral cavity. It accounts for approximately 5% of all malignant tumors. Approximately 97% of all oral cancers are squamous cell carcinomas, followed by adenocarcinomas, and rarely malignant melanomas. It occurs particularly in males (twice as common in males than in females) of middle age (above 40 years). Agrimonia pilosa Ledeb. has traditionally been known for its effective antitumor activity and is currently used in China for cancer therapy. A. pilosa Ledeb. has been traditionally used for the treatment of abdominal pain, sore throat, headache, blood discharge, parasitic infections, and eczema in Korea and other Asian countries. Most studies on A. pilosa Ledeb. are related to the leaves and a few investigated the roots of the plant. However, detailed mechanisms of antitumor activity of A. pilosa Ledeb. have not been fully elucidated. Furthermore, to date, there have been no reports on the antitumor effect of A. pilosa Ledeb. in oral squamous cells. In this study, we used proteomic technology to observe changes in proteins related to anticancer activity of A. pilosa Ledeb. and identified target proteins among altered proteins to reveal the underlying mechanism of action.

3.
Inflamm Res ; 62(2): 145-54, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23064654

RESUMEN

OBJECTIVE: Porphyromonas gingivalis is a major periodontopathogen that plays a role in the pathogenesis of periodontal disease. In this study, we investigated the effect of 18alpha-glycyrrhetinic acid (18α-GA), a natural triterpenoid compound derived from licorice root extract, on P. gingivalis lipopolysaccharide (LPS)-induced vascular permeability, which is a hallmark of inflammatory diseases such as periodontitis. METHODS: The inhibitory effects of 18α-GA on endothelial permeability were determined by measuring in vivo and in vitro endothelial permeability. Endothelial cells were pretreated with 18α-GA before exposure to P. gingivalis LPS, and total RNA or proteins were extracted and analyzed by reverse transcription polymerase chain reaction or western blotting. RESULTS: Porphyromonas gingivalis LPS-induced endothelial permeability was significantly inhibited by 18α-GA both in vivo and in vitro. 18α-GA reduces P. gingivalis LPS-induced gap formation of endothelial cells. Importantly, 18α-GA modulated the expression and secretion of interleukin-8 (IL-8), a key inducer of vascular permeability, by downregulating nuclear factor-κB (NF-κB). 18α-GA suppressed P. gingivalis LPS-stimulated inhibitor of kappa B (IκB) kinase activation, IκBα phosphorylation, and nuclear translocation of NF-κB. CONCLUSIONS: Overall, these findings suggest that 18α-GA significantly reduces P. gingivalis LPS-induced vascular permeability by repressing NF-κB-dependent endothelial IL-8 production, suggesting its therapeutic potential in P. gingivalis-related vascular diseases.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ácido Glicirretínico/farmacología , Lipopolisacáridos , Porphyromonas gingivalis , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Interleucina-8/metabolismo , FN-kappa B/metabolismo
4.
J Pineal Res ; 55(3): 294-303, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23869429

RESUMEN

Aberrant expression of inducible nitric oxide synthase (iNOS) in macrophages, which has been reported to be suppressed by melatonin, has an important contribution in the development of pathological inflammation. Visfatin, an adipokine, regulates the expression of various inflammatory factors, leading to inflammation; however, the influence of visfatin on iNOS-driven processes in macrophages is unclear. Here, we report the assessment of the role of visfatin in the regulation of iNOS gene expression in macrophages. Our data show that the levels of iNOS protein in peritoneal macrophages as well as nitric oxide (NO) in blood plasma were significantly lower after lipopolysaccharide treatment in visfatin(+/-) mice than those in the WT mice. In addition, visfatin increases iNOS mRNA and protein levels in RAW 264.7 cells, along with increasing production of NO. The enhancement of iNOS expression was prevented by treating the cells with inhibitors of the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3), nuclear factor (NF)-κB, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase pathways. Our results also show that visfatin-induced iNOS expression and NO production were significantly inhibited by melatonin, an effect that was closely associated with a reduction in phosphorylated JAK2/STAT3 levels and with the inhibition of p65 translocation into nucleus. In conclusion, our data show, for the first time, that melatonin suppresses visfatin-induced iNOS upregulation in macrophages by inhibiting the STAT3 and NF-κB pathways. Moreover, our data suggest that melatonin could be therapeutically useful for attenuating the development of visfatin-iNOS axis-associated diseases.


Asunto(s)
Antioxidantes/farmacología , Citocinas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Macrófagos Peritoneales/enzimología , Melatonina/farmacología , Nicotinamida Fosforribosiltransferasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico/biosíntesis , Animales , Línea Celular , Citocinas/genética , Regulación Enzimológica de la Expresión Génica/genética , Janus Quinasa 2/genética , Janus Quinasa 2/inmunología , Janus Quinasa 2/metabolismo , Janus Quinasa 3/genética , Janus Quinasa 3/metabolismo , Ratones , Ratones Mutantes , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo II/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
5.
Korean J Physiol Pharmacol ; 17(4): 253-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23946683

RESUMEN

This study examined the mechanism of action of a local anesthetic, lidocaine·HCl. Energy transfer between the surface fluorescent probe, 1-anilinonaphthalene-8-sulfonic acid, and the hydrophobic fluorescent probe, 1,3-di(1-pyrenyl) propane, was used to determine the effect of lidocaine·HCl on the thickness (D) of the synaptosomal plasma membrane vesicles (SPMV) isolated from the bovine cerebral cortex, and liposomes of the total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. The thickness (D) of the intact SPMV, SPMVTL and SPMVPL were 1.044±0.008, 0.914±0.005 and 0.890±0.003 (arbitrary units, n=5) at 37℃ (pH 7.4), respectively. Lidocaine·HCl decreased the thickness of the neuronal and model membrane lipid bilayers in a dose-dependent manner with a significant decrease in the thickness, even at 0.1 mM. The decreasing effect of lidocaine·HCl on the membrane thickness might be responsible for some, but not all of its anesthetic action.

6.
Korean J Physiol Pharmacol ; 17(4): 291-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23946688

RESUMEN

Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.

7.
J Dent Sci ; 18(3): 1177-1188, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404665

RESUMEN

Background: /purpose: Dental pulp plays an important role in the maintenance of tooth homeostasis and repair. The aging of dental pulp affects the functional life of the tooth owing to the senescence of dental pulp cells. Toll-like receptor 4 (TLR4) is involved in regulating cellular senescence in dental pulp. We have recently demonstrated that visfatin induces the senescence of human dental pulp cells (hDPCs). Here, we explored the association of TLR4 with visfatin signaling in cellular senescence in hDPCs. Materials and methods: mRNA levels were determined using reverse transcription polymerase chain reaction (PCR) and quantitative real time-PCR. Protein levels were determined using immunofluorescence staining and Western blot analysis. Gene silencing was performed using small interfering RNA. The degree of cellular senescence was measured by senescence-associated-ß-galactosidase (SA-ß-gal) staining. Oxidative stress was determined by measurement of NADP/NADPH levels and intracellular reactive oxygen species (ROS) levels. Results: Neutralizing anti-TLR4 antibodies or TLR4 inhibitor markedly blocked visfatin-induced hDPCs senescence, as revealed by an increase in the number of SA-ß-gal-positive hDPCs and upregulation of p21 and p53 proteins. Moreover, visfatin-induced senescence was associated with excessive ROS production; NADPH consumption; telomere DNA damage induction; interleukin (IL)-1ß, IL-6, IL-8, cyclooxygenase-2, and tumor necrosis factor-α upregulation; and nuclear factor-κB and mitogen-activated protein kinase activation. All of these alterations were attenuated by TLR4 blockade. Conclusion: Our findings indicate that TLR4 plays an important role in visfatin-induced senescence of hDPCs and suggest that the visfatin/TLR4 signaling axis can be a novel therapeutic target for the treatment of inflammaging-related diseases, including pulpitis.

8.
Biochem Biophys Res Commun ; 418(4): 662-8, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22293189

RESUMEN

Thromboxane synthase (TXAS) is an enzyme that catalyzes the synthesis of thromboxane A(2) (TXA(2)). Overexpression of TXAS is associated with a variety of vascular diseases. Recently, we reported that visfatin, a novel adipokine, exhibits angiogenic actions. In this study, we showed that visfatin increased mRNA and protein levels of TXAS and stimulated TXA(2) biosynthesis in vascular endothelial cells. In addition, visfatin induced the expression and secretion of interleukin-8 (IL-8), which is blocked by a TXAS inhibitor and by the transfection of siRNA specific for TXAS. Furthermore, the inhibition of TXAS activity and blockade of the IL-8 receptor attenuated visfatin-induced endothelial angiogenesis. Together, these results showed that visfatin promoted IL-8 production by upregulation of TXAS, leading to angiogenic activation in endothelial cells.


Asunto(s)
Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Interleucina-8/genética , Neovascularización Fisiológica/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Tromboxano A2/biosíntesis , Tromboxano-A Sintasa/genética , Línea Celular Tumoral , Humanos , Regulación hacia Arriba
9.
Korean J Physiol Pharmacol ; 16(6): 413-22, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23269904

RESUMEN

The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine·HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine·HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine·HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine·HCl. Lidocaine·HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.

10.
Antioxidants (Basel) ; 10(2)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578781

RESUMEN

FK866 possesses various functional properties, such as anti-angiogenic, anti-cancer, and anti-inflammatory activities. We previously demonstrated that premature senescence of human dental pulp cells (hDPCs) was induced by hydrogen peroxide (H2O2). The present study aimed to investigate whether H2O2-induced premature senescence of hDPCs is affected by treatment with FK866. We found that FK866 markedly inhibited the senescent characteristics of hDPCs after exposure to H2O2, as revealed by an increase in the number of senescence-associated ß-galactosidase (SA-ß-gal)-positive hDPCs and the upregulation of the p21 and p53 proteins, which acts as molecular indicators of cellular senescence. Moreover, the stimulatory effects of H2O2 on cellular senescence are associated with oxidative stress induction, such as excessive ROS production and NADPH consumption, telomere DNA damage induction, and upregulation of senescence-associated secretory phenotype factors (IL-1ß, IL-6, IL-8, COX-2, and TNF-α) as well as NF-κB activation, which were all blocked by FK866. Thus, FK866 might antagonize H2O2-induced premature senescence of hDPCs, acting as a potential therapeutic antioxidant by attenuating oxidative stress-induced pathologies in dental pulp, including inflammation and cellular senescence.

11.
J Med Food ; 24(11): 1145-1152, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34792394

RESUMEN

We aimed to analyze the effects and explore the molecular mechanisms of a natural herb mixture extract (NME) on osteoblasts during differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs). We tried to confirm the regulation of osteogenic differentiation during NME treatment. Alkaline phosphatase assay and Alizarin red S staining were performed to evaluate the regulation of osteogenic differentiation. Real-time polymerase chain reaction was performed to analyze the expression of osteoblast maker genes, and Western blot was used to verify the signaling pathway. Signaling pathway conformation, selective bone morphogenetic protein receptor inhibitor, and dorsomorphin homolog 1 were used as pretreatments before inducing osteogenic differentiation. We determined that MME (natural herb mixture extract) was a safe material and significantly increased osteoblast differentiation and that SMAD phosphorylation is a key signaling pathway that regulates osteogenic differentiation in hBMSCs.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Médula Ósea , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Humanos , Extractos Vegetales/farmacología
12.
Biochem Biophys Res Commun ; 403(1): 59-65, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21040705

RESUMEN

Orexin-A, a neuropeptide originally discovered in the hypothalamus, is found in peripheral organs, as well as in the central nervous system, and is involved in the regulation of food intake, energy homeostasis, and cardiovascular functions. In this study, we report that orexin-A induces invivo neovascularization in a mouse Matrigel plug and ex vivo sprouting of endothelial cells in rat aortic rings. We also show that orexin-A increases migration and tube formation in human umbilical vein endothelial cells (HUVECs), and this effect is mediated by orexin receptors on endothelial cells. Moreover, orexin-A activates the extracellular signal-regulated kinase 1/2 (ERK1/2) in HUVECs, which is closely linked to angiogenic responses. The inhibition of ERK activation significantly suppresses orexin-A-stimulated endothelial angiogenesis. Taken together, our results indicate that orexin-A functions as a new proangiogenic peptide and requires MEK/ERK-dependent pathway for its angiogenic actions. These results suggest orexin-A and its receptor may act as important modulators of angiogenesis under pathophysiological conditions.


Asunto(s)
Células Endoteliales/fisiología , Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neovascularización Fisiológica , Neuropéptidos/fisiología , Animales , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Humanos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuropéptidos/farmacología , Orexinas , Ratas
13.
Biochem Biophys Res Commun ; 397(3): 413-9, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20510674

RESUMEN

Thromboxane A(2) (TXA(2)), a major prostanoid formed from prostaglandin H(2) by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA(2) mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-kappaB (NF-kappaB). U46619 induced the activation of NF-kappaB through IkappaB kinase (IKK) activation, IkappaB phosphorylation and NF-kappaB nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-kappaB activation in endothelial cells.


Asunto(s)
Permeabilidad Capilar , Endotelio Vascular/metabolismo , Interleucina-8/biosíntesis , Tromboxano A2/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-8/genética , FN-kappa B/metabolismo , Fosforilación , Regiones Promotoras Genéticas/efectos de los fármacos , Transporte de Proteínas , Regulación hacia Arriba
14.
Exp Cell Res ; 315(19): 3359-69, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19703440

RESUMEN

Neuromedin B (NMB) is one of the bombesin-like peptides in mammals. Recently, bombesin-like peptides have been characterized as growth factors in highly vascularized tumors. In this study, we report that NMB potently stimulates in vivo neovascularization in a mouse Matrigel plug and the sprouting of endothelial cells ex vivo in rat aortic rings. In addition, NMB increases the migration and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with NMB activates the extracellular signal-regulated kinase 1/2 (ERK(1/2)), Akt, and endothelial nitric oxide synthase (eNOS) and increases the level of NO production in a dose- and time-dependent manner. Furthermore, ERK activation and angiogenic sprouting in response to NMB are significantly blocked by the MEK inhibitor. Inhibition of phosphatidylinositol 3-kinase (PI3K) suppresses the NMB-stimulated tubular formation of HUVECs, along with reduction in the phosphorylation of Akt and eNOS. Taken together, these results indicate that NMB is a novel angiogenic peptide, and its angiogenic activity is mediated by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent pathways. This study suggests that NMB may play important roles in mediating a variety of pathophysiological angiogenesis.


Asunto(s)
Células Endoteliales/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Neuroquinina B/análogos & derivados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Aorta/citología , Células Endoteliales/metabolismo , Activación Enzimática , Humanos , Ratones , Ratones Endogámicos C57BL , Neuroquinina B/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Transducción de Señal , Venas Umbilicales/citología
15.
Am J Chin Med ; 48(8): 1875-1893, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33308100

RESUMEN

Inflammation regulation is essential for maintaining healthy functions and normal homeostasis of the body. Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium and a major pathogen that causes oral inflammation and other systemic inflammations. This study aims to examine the anti-inflammatory effects of Agrimonia pilosa Ledeb root extracts (APL-ME) in Porphyromonas gingivalis LPS-induced RAW 264.7 cells and find anti-inflammatory effect compounds of APL-ME. The anti-inflammatory effects of APL-ME were evaluated anti-oxidant activity, cell viability, nitrite concentration, pro-inflammatory cytokines (interleukin-1[Formula: see text], interleukin-6, tumor necrosis factor (TNF)-[Formula: see text], and anti-inflammatory cytokine (interleukin-10 (IL-10)). Also, Inflammation related genes and proteins, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), expression were decreased by APL-ME and mitogen-activated protein kinase (MAPK) signaling proteins expression was regulated by APL-ME. Liquid chromatography-mass spectrometer (LC/MS)-MS analysis results indicated that several components were detected in APL-ME. Our study indicated that APL-ME suppressed nitrite concentrations, pro-inflammatory cytokines such as IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] in P. gingivalis LPS induced RAW 264.7 cells. However, IL-10 expression was increased by ALP-ME. In addition, protein expressions of COX-2 and iNOS were inhibited APL-ME extracts dose-dependently. According to these results, APL-ME has anti-inflammatory effects in P. gingivalis LPS induced RAW 264.7 cells.


Asunto(s)
Agrimonia/química , Antiinflamatorios , Inflamación/etiología , Inflamación/genética , Lipopolisacáridos/efectos adversos , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Raíces de Plantas/química , Animales , Antioxidantes , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Periodontitis/tratamiento farmacológico , Periodontitis/etiología , Extractos Vegetales/aislamiento & purificación , Porphyromonas gingivalis , Células RAW 264.7
16.
Cells ; 9(1)2020 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-31940881

RESUMEN

Dental pulp plays an important role in the health of teeth. The aging of teeth is strongly related to the senescence of dental pulp cells. A novel adipokine, visfatin, is closely associated with cellular senescence. However, little is known about the effect of visfatin on the senescence of human dental pulp cells (hDPCs). Here, it was found that in vivo visfatin levels in human dental pulp tissues increase with age and are upregulated in vitro in hDPCs during premature senescence activated by H2O2, suggesting a correlation between visfatin and senescence. In addition, visfatin knockdown by small interfering RNA led to the reduction in hDPC senescence; however, treatment with exogenous visfatin protein induced the senescence of hDPCs along with increased NADPH consumption, which was reversed by FK866, a chemical inhibitor of visfatin. Furthermore, visfatin-induced senescence was associated with both the induction of telomere damage and the upregulation of senescence-associated secretory phenotype (SASP) factors as well as NF-κB activation, which were all inhibited by FK866. Taken together, these results demonstrate, for the first time, that visfatin plays a pivotal role in hDPC senescence in association with telomere dysfunction and the induction of SASP factors.


Asunto(s)
Senescencia Celular , Citocinas/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Adulto , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Biochim Biophys Acta ; 1783(5): 886-95, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18241674

RESUMEN

Visfatin has recently been identified as a novel visceral adipokine which may be involved in obesity-related vascular disorders. However, it is not known whether visfatin directly contributes to endothelial dysfunction. Here, we investigated the effect of visfatin on vascular inflammation, a key step in a variety of vascular diseases. Visfatin induced leukocyte adhesion to endothelial cells and the aortic endothelium by induction of the cell adhesion molecules, ICAM-1 and VCAM-1. Promoter analysis revealed that visfatin-mediated induction of CAMs is mainly regulated by nuclear factor-kappaB (NF-kappaB). Visfatin stimulated IkappaBalpha phosphorylation, nuclear translocation of the p65 subunit of NF-kappaB, and NF-kappaB DNA binding activity in HMECs. Furthermore, visfatin increased ROS generation, and visfatin-induced CAMs expression and NF-kappaB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results demonstrate that visfatin is a vascular inflammatory molecule that increases expression of the inflammatory CAMs, ICAM-1 and VCAM-1, through ROS-dependent NF-kappaB activation in endothelial cells.


Asunto(s)
Endotelio Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , FN-kappa B/metabolismo , Nicotinamida Fosforribosiltransferasa/farmacología , Especies Reactivas de Oxígeno/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Adhesión Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Expresión Génica , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/inmunología , NADPH Oxidasas/metabolismo , Regiones Promotoras Genéticas , Molécula 1 de Adhesión Celular Vascular/metabolismo
18.
Arch Pharm Res ; 32(4): 583-91, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19407977

RESUMEN

P. gingivalis is a major pathogen that is involved in the onset and progression of periodontal disease. This study investigated the effect of resveratrol, a naturally occurring polyphenol, on P. gingivalis LPS-accelerated vascular inflammation, a key step in the progression of periodontitis. Resveratrol significantly inhibited the P. gingivalis LPS-induced adhesion of leukocytes to endothelial cells and to the aortic endothelium by down-regulating the cell adhesion molecules, ICAM-1 and VCAM-1. Moreover, the inhibition of the P. gingivalis LPS-induced cell adhesion molecules by resveratrol was mainly mediated by nuclear factor-kappaB (NF-kappaB). Resveratrol suppressed P. gingivalis LPS-stimulated IkappaBalpha phosphorylation and nuclear translocation of the p65 subunit of NF-kappaB in HMECs. Overall, these findings suggest that resveratrol significantly attenuates the P. gingivalis LPS-induced monocyte adhesion to the endothelium by suppressing the expression of the NF-kappaB-dependent cell adhesion molecules, suggesting its therapeutic role in periodontal pathogen-induced vascular inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Células Endoteliales/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Lipopolisacáridos/farmacología , Porphyromonas gingivalis/patogenicidad , Estilbenos/farmacología , Factor de Transcripción ReIA/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales/inmunología , Humanos , Proteínas I-kappa B/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Lipopolisacáridos/aislamiento & purificación , Masculino , Inhibidor NF-kappaB alfa , Fosforilación , Porphyromonas gingivalis/química , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Resveratrol , Transcripción Genética/efectos de los fármacos , Células U937 , Molécula 1 de Adhesión Celular Vascular/genética
19.
Arch Pharm Res ; 32(10): 1469-73, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19898812

RESUMEN

The aim of this study was to provide a basis for examining the molecular mechanism for the pharmacological action of ethanol. Energy transfer between the surface fluorescent probe 1-anilinonaphthalene-8-sulfonic acid and hydrophobic fluorescent probe 1,3-di(1-pyrenyl)propane was used to examine the effect of both dimyristoylphosphatidylethanol (DMPEt) and ethanol on the thickness (D) of the synaptosomal plasma membrane vesicles (SPMV) isolated from the bovine cerebral cortex. The thickness (D) of the intact SPMV was 1.044 +/- 0.008 (arbitrary units, n=5) at 37 degrees C (pH 7.4). Both DMPEt and ethanol decreased the thickness of the SPMV lipid bilayer in a dose-dependent manner with a significant decrease in thickness observed at 5 microM and 25 mM, respectively. It was assumed that both ethanol and DMPEt cause interdigitation in the SPMV lipid bilayers. The effects of ethanol on the neuronal membranes were attributed to its direct and indirect actions. The indirect action of ethanol refers to the action of phosphatidylethanol, which is an ethanol abnormal metabolite, on the neuronal membranes. The decrease in membrane thickness by both DMPEt and ethanol might be responsible for some, but not all of its anesthetic actions.


Asunto(s)
Membrana Celular/efectos de los fármacos , Etanol/farmacología , Glicerofosfolípidos/farmacología , Membrana Dobles de Lípidos/metabolismo , Neuronas/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Animales , Bovinos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Relación Dosis-Respuesta a Droga , Transferencia de Energía/efectos de los fármacos , Técnicas In Vitro , Neuronas/metabolismo , Neuronas/ultraestructura , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
20.
Chem Phys Lipids ; 154(1): 19-25, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18407836

RESUMEN

Fluorescent probe techniques were used to evaluate the effect of propoxycaine.HCl on the physical properties (transbilayer asymmetric lateral and rotational mobilities, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of both 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer (RET) from the tryptophans of membrane proteins to Py-3-Py. Propoxycaine.HCl increased the bulk lateral and rotational mobilities, and annular lipid fluidity in SPMVs lipid bilayers, and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMVs lipid bilayer induced by propoxycaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral and rotational mobilities of SPMVs lipid bilayer. It also caused membrane proteins to cluster. These effects of propoxycaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of propoxycaine.HCl.


Asunto(s)
Anestésicos Locales/farmacología , Corteza Cerebral/metabolismo , Fluidez de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Propoxicaína/farmacología , Membranas Sinápticas/efectos de los fármacos , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Transferencia de Energía , Colorantes Fluorescentes , Fluidez de la Membrana/fisiología , Proteínas de la Membrana/química , Espectrometría de Fluorescencia , Membranas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA