Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 100(4): 1527-1594, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32216549

RESUMEN

Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.


Asunto(s)
Antivirales/farmacología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano , Vacunas Virales/inmunología , Humanos , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/inmunología
2.
Traffic ; 22(12): 482-489, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34622522

RESUMEN

Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.


Asunto(s)
Virus de la Rabia , Núcleo Celular/metabolismo , Señales de Exportación Nuclear , Virus de la Rabia/metabolismo , Proteínas Virales/metabolismo , Virulencia
3.
J Virol ; 96(20): e0139622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36222519

RESUMEN

Viral hijacking of microtubule (MT)-dependent transport is well understood, but several viruses also express discrete MT-associated proteins (vMAPs), potentially to modulate MT-dependent processes in the host cell. Specific roles for vMAP-MT interactions include subversion of antiviral responses by P3, an isoform of the P protein of rabies virus (RABV; genus Lyssavirus), which mediates MT-dependent antagonism of interferon (IFN)-dependent signal transducers and activators of transcription 1 (STAT1) signaling. P3 also undergoes nucleocytoplasmic trafficking and inhibits STAT1-DNA binding, indicative of intranuclear roles in a multipronged antagonistic strategy. MT association/STAT1 antagonist functions of P3 correlate with pathogenesis, indicating potential as therapeutic targets. However, key questions remain, including whether other P protein isoforms interact with MTs, the relationship of these interactions with pathogenesis, and the extent of conservation of P3-MT interactions between diverse pathogenic lyssaviruses. Using super-resolution microscopy, live-cell imaging, and immune signaling analyses, we find that multiple P protein isoforms associate with MTs and that association correlates with pathogenesis. Furthermore, P3 proteins from different lyssaviruses exhibit variation in intracellular localization phenotypes that are associated with STAT1 antagonist function, whereby P3-MT association is conserved among lyssaviruses of phylogroup I but not phylogroup II, while nucleocytoplasmic localization varies between P3 proteins of the same phylogroup within both phylogroup I and II. Nevertheless, the divergent P3 proteins retain significant IFN antagonist function, indicative of adaptation to favor different inhibitory mechanisms, with MT interaction important to phylogroup I viruses. IMPORTANCE Lyssaviruses, including rabies virus, cause rabies, a progressive encephalomyelitis that is almost invariably fatal. There are no effective antivirals for symptomatic infection, and effective application of current vaccines is limited in areas of endemicity, such that rabies causes ~59,000 deaths per year. Viral subversion of host cell functions, including antiviral immunity, is critical to disease, and isoforms of the lyssavirus P protein are central to the virus-host interface underpinning immune evasion. Here, we show that specific cellular interactions of P protein isoforms involved in immune evasion vary significantly between different lyssaviruses, indicative of distinct strategies to evade immune responses. These findings highlight the diversity of the virus-host interface, an important consideration in the development of pan-lyssavirus therapeutic approaches.


Asunto(s)
Lyssavirus , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Humanos , Lyssavirus/genética , Interferones/metabolismo , Virus de la Rabia/genética , Antivirales/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ADN/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430384

RESUMEN

Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily of nuclear transporters is critical to the eukaryotic function and a point of therapeutic intervention with the potential to limit disease progression and pathogenic outcomes. Although the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii both retain unique IMPα genes that are essential, a detailed analysis of their properties has not been performed. As a first step to validate apicomplexan IMPα as a target, we set out to compare the properties of P. falciparum and T. gondii IMPα (PfIMPα and TgIMPα, respectively) to those of mammalian IMPα, as exemplified by Mus musculus IMPα (MmIMPα). Close similarities were evident, with all three showing high-affinity binding to modular nuclear localisation signals (NLSs) from apicomplexans as well as Simian virus SV40 large tumour antigen (T-ag). PfIMPα and TgIMPα were also capable of binding to mammalian IMPß1 (MmIMPß1) with high affinity; strikingly, NLS binding by PfIMPα and TgIMPα could be inhibited by the mammalian IMPα targeting small molecules ivermectin and GW5074 through direct binding to PfIMPα and TgIMPα to perturb the α-helical structure. Importantly, GW5074 could be shown for the first time to resemble ivermectin in being able to limit growth of P. falciparum. The results confirm apicomplexan IMPα as a viable target for the development of therapeutics, with agents targeting it worthy of further consideration as an antimalarial.


Asunto(s)
Parásitos , alfa Carioferinas , Ratones , Animales , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Plasmodium falciparum/metabolismo , Parásitos/metabolismo , Ivermectina/farmacología , Unión Proteica , Señales de Localización Nuclear/genética , Mamíferos/metabolismo
5.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887322

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of respiratory infections in infants and the elderly. Although the RSV matrix (M) protein has key roles in the nucleus early in infection, and in the cytoplasm later, the molecular basis of switching between the nuclear and cytoplasmic compartments is not known. Here, we show that protein kinase CK2 can regulate M nucleocytoplasmic distribution, whereby inhibition of CK2 using the specific inhibitor 4,5,6,7-tetrabromobenzo-triazole (TBB) increases M nuclear accumulation in infected cells as well as when ectopically expressed in transfected cells. We use truncation/mutagenic analysis for the first time to show that serine (S) 95 and threonine (T) 205 are key CK2 sites that regulate M nuclear localization. Dual alanine (A)-substitution to prevent phosphorylation abolished TBB- enhancement of nuclear accumulation, while aspartic acid (D) substitution to mimic phosphorylation at S95 increased nuclear accumulation. D95 also induced cytoplasmic aggregate formation, implying that a negative charge at S95 may modulate M oligomerization. A95/205 substitution in recombinant RSV resulted in reduced virus production compared with wild type, with D95/205 substitution resulting in an even greater level of attenuation. Our data support a model where unphosphorylated M is imported into the nucleus, followed by phosphorylation of T205 and S95 later in infection to facilitate nuclear export and cytoplasmic retention of M, respectively, as well as oligomerization/virus budding. In the absence of widely available, efficacious treatments to protect against RSV, the results raise the possibility of antiviral strategies targeted at CK2.


Asunto(s)
Virus Sincitial Respiratorio Humano , Transporte Activo de Núcleo Celular , Anciano , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Fosforilación
6.
Biochem Biophys Res Commun ; 538: 163-172, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33341233

RESUMEN

FDA approved for parasitic indications, the small molecule ivermectin has been the focus of growing attention in the last 8 years due to its potential as an antiviral. We first identified ivermectin in a high throughput compound library screen as an agent potently able to inhibit recognition of the nuclear localizing Human Immunodeficiency Virus-1 (HIV-1) integrase protein by the host importin (IMP) α/ß1 heterodimer, and recently demonstrated its ability to bind directly to IMPα to cause conformational changes that prevent its function in nuclear import of key viral as well as host proteins. Cell culture experiments have shown robust antiviral action towards a whole range of viruses, including HIV-1, dengue, Zika and West Nile Virus, Venezuelan equine encephalitis virus, Chikungunya, pseudorabies virus, adenovirus, and SARS-CoV-2 (COVID-19). Close to 70 clinical trials are currently in progress worldwide for SARS-CoV-2. Although few of these studies have been completed, the results that are available, as well as those from observational/retrospective studies, indicate clinical benefit. Here we discuss the case for ivermectin as a host-directed broad-spectrum antiviral agent, including for SARS-CoV-2.


Asunto(s)
Antiparasitarios/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Ivermectina/farmacología , SARS-CoV-2/efectos de los fármacos , Antiparasitarios/uso terapéutico , Antivirales/uso terapéutico , Humanos , Ivermectina/uso terapéutico , alfa Carioferinas/antagonistas & inhibidores
7.
Biochem Biophys Res Commun ; 534: 141-148, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33333437

RESUMEN

Nuclear transporter Importin (Imp, Ipo) 13 is known to transport various mammalian cargoes into/out of the nucleus, but its role in directing cell-fate is unclear. Here we examine the role of Imp13 in the maintenance of pluripotency and differentiation of embryonic stem cells (ESCs) for the first time, using an embryonic body (EB)-based model. When induced to differentiate, Ipo13-/- ESCs displayed slow proliferation, reduced EB size, and lower expression of the proliferation marker KI67, concomitant with an increase in the number of TUNEL+ nuclei compared to wildtype ESCs. At days 5 and 10 of differentiation, Ipo13-/- EBs also showed enhanced loss of the pluripotency transcript OCT3/4, and barely detectable clusters of OCT3/4 positive cells. Day 5 Ipo13-/- EBs further exhibited reduced levels of the mesodermal markers Brachyury and Mixl1, correlating with reduced numbers of haemoglobinised cells generated. Our findings suggest that Imp13 is critical to ESC survival as well as early post-gastrulation differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Carioferinas/fisiología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Cuerpos Embrioides/metabolismo , Técnicas de Inactivación de Genes , Carioferinas/genética , Mesodermo/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
8.
Biochem Soc Trans ; 49(1): 281-295, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33439253

RESUMEN

Although transport into the nucleus mediated by the importin (IMP) α/ß1-heterodimer is central to viral infection, small molecule inhibitors of IMPα/ß1-dependent nuclear import have only been described and shown to have antiviral activity in the last decade. Their robust antiviral activity is due to the strong reliance of many different viruses, including RNA viruses such as human immunodeficiency virus-1 (HIV-1), dengue (DENV), and Zika (ZIKV), on the IMPα/ß1-virus interface. High-throughput compound screens have identified many agents that specifically target this interface. Of these, agents targeting IMPα/ß1 directly include the FDA-approved macrocyclic lactone ivermectin, which has documented broad-spectrum activity against a whole range of viruses, including HIV-1, DENV1-4, ZIKV, West Nile virus (WNV), Venezuelan equine encephalitis virus, chikungunya, and most recently, SARS-CoV-2 (COVID-19). Ivermectin has thus far been tested in Phase III human clinical trials for DENV, while there are currently close to 80 trials in progress worldwide for SARS-CoV-2; preliminary results for randomised clinical trials (RCTs) as well as observational/retrospective studies are consistent with ivermectin affording clinical benefit. Agents that target the viral component of the IMPα/ß1-virus interface include N-(4-hydroxyphenyl) retinamide (4-HPR), which specifically targets DENV/ZIKV/WNV non-structural protein 5 (NS5). 4-HPR has been shown to be a potent inhibitor of infection by DENV1-4, including in an antibody-dependent enhanced animal challenge model, as well as ZIKV, with Phase II clinical challenge trials planned. The results from rigorous RCTs will help determine the therapeutic potential of the IMPα/ß1-virus interface as a target for antiviral development.


Asunto(s)
Ivermectina/farmacología , Proteínas no Estructurales Virales/metabolismo , Virosis/prevención & control , Virus/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Animales , Antivirales/farmacología , Humanos , Unión Proteica/efectos de los fármacos , Virosis/metabolismo , Virosis/virología , Virus/patogenicidad
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804953

RESUMEN

Adenoviruses contain dsDNA covalently linked to a terminal protein (TP) at the 5'end. TP plays a pivotal role in replication and long-lasting infectivity. TP has been reported to contain a nuclear localisation signal (NLS) that facilitates its import into the nucleus. We studied the potential NLS motifs within TP using molecular and cellular biology techniques to identify the motifs needed for optimum nuclear import. We used confocal imaging microscopy to monitor the localisation and nuclear association of GFP fusion proteins. We identified two nuclear localisation signals, PV(R)6VP and MRRRR, that are essential for fully efficient TP nuclear entry in transfected cells. To study TP-host interactions further, we expressed TP in Escherichia coli (E. coli). Nuclear uptake of purified protein was determined in digitonin-permeabilised cells. The data confirmed that nuclear uptake of TP requires active transport using energy and shuttling factors. This mechanism of nuclear transport was confirmed when expressed TP was microinjected into living cells. Finally, we uncovered the nature of TP binding to host nuclear shuttling proteins, revealing selective binding to Imp ß, and a complex of Imp α/ß but not Imp α alone. TP translocation to the nucleus could be inhibited using selective inhibitors of importins. Our results show that the bipartite NLS is required for fully efficient TP entry into the nucleus and suggest that this translocation can be carried out by binding to Imp ß or Imp α/ß. This work forms the biochemical foundation for future work determining the involvement of TP in nuclear delivery of adenovirus DNA.


Asunto(s)
Adenoviridae/fisiología , Núcleo Celular/metabolismo , Señales de Localización Nuclear/genética , Proteínas Virales/química , Transporte Activo de Núcleo Celular , Citosol/metabolismo , ADN/química , Escherichia coli/metabolismo , Genoma Viral , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopía Confocal , Unión Proteica , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
10.
Cell Microbiol ; 21(1): e12953, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30216959

RESUMEN

Human immunodeficiency virus (HIV) continues to be a major contributor to morbidity and mortality worldwide, particularly in developing nations where high cost and logistical issues severely limit the use of current HIV therapeutics. This, combined HIV's high propensity to develop resistance, means that new antiviral agents against novel targets are still urgently required. We previously identified novel anti-HIV agents directed against the nuclear import of the HIV integrase (IN) protein, which plays critical roles in the HIV lifecycle inside the cell nucleus, as well as in transporting the HIV preintegration complex (PIC) into the nucleus. Here we investigate the structure activity relationship of a series of these compounds for the first time, including a newly identified anti-IN compound, budesonide, showing that the extent of binding to the IN core domain correlates directly with the ability of the compound to inhibit IN nuclear transport in a permeabilised cell system. Importantly, compounds that inhibited the nuclear transport of IN were found to significantly decrease HIV viral replication, even in a dividing cell system. Significantly, budesonide or its analogue flunisolide, were able to effect a significant reduction in the presence of specific nuclear forms of the HIV DNA (2-LTR circles), suggesting that the inhibitors work though blocking IN, and potentially PIC, nuclear import. The work presented here represents a platform for further development of these specific inhibitors of HIV replication with therapeutic and prophylactic potential.


Asunto(s)
Transporte Activo de Núcleo Celular/efectos de los fármacos , Budesonida/farmacología , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH/efectos de los fármacos , VIH/enzimología , Integración Viral/efectos de los fármacos , Animales , Budesonida/química , Línea Celular , Fluocinolona Acetonida/análogos & derivados , Fluocinolona Acetonida/química , Fluocinolona Acetonida/farmacología , Inhibidores de Integrasa VIH/química , Humanos , Unión Proteica , Ratas , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
11.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1114-1129, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29750988

RESUMEN

Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/ß1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2-P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2-5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2-3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes.


Asunto(s)
Carioferinas/metabolismo , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/metabolismo , Biología Computacional , Cristalografía por Rayos X , Citomegalovirus/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Virales/química , Proteínas Virales/metabolismo
12.
Biochem Biophys Res Commun ; 513(4): 1076-1082, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31010684

RESUMEN

Signal transducer and activator of transcription 3 (STAT3), a transcription factor responsive to the activation of cytokine receptors, is known for its oncogenic actions. Whilst STAT3α is the predominant spliceform in most tissues, alternative splicing of the STAT3 gene can generate a shorter STAT3ß spliceform. Redirecting splicing to enhance STAT3ß levels can result in tumor suppression in vivo, and so we evaluated the cellular basis underlying the anti-tumorigenic properties of STAT3ß. To investigate the impact of increased STAT3ß levels in cancer cells, we implemented a Morpholino-based antisense oligonucleotide strategy to modulate STAT3 spliceform expression in the MCF10CA1h cancer cells of the MCF10 series of human breast cancer cells. We employed nonsense-mediated decay (NMD) oligonucleotides and STAT3α-to-ß expression switching (SWI) oligonucleotides to successfully induce STAT3 knockdown and redirect alternative splicing to increase STAT3ß levels in MCF10CA1h cells, respectively. Importantly, assessment of the impacts of STAT3 splicing modulation on tumor cell biology showed that the SWI treatment significantly reduced MCF10CA1h cell growth, viability, and migration, whereas NMD treatment was without significant impact, although neither NMD nor SWI oligonucleotides significantly inhibited MCF10CA1h cell invasion through a semi-solid matrix. In conclusion, our data demonstrate that reduced breast cancer cell growth, viability and migration, but not invasion, follow the redirection of STAT3α-to-ß expression switching to favour STAT3ß expression.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/patología , Oligonucleótidos/farmacología , Factor de Transcripción STAT3/metabolismo , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Invasividad Neoplásica , Isoformas de Proteínas/farmacología
13.
Reproduction ; 158(3): 267-280, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31299635

RESUMEN

Expression profiles and subcellular localisations of core Drosophila behaviour/human splicing (DBHS) proteins (PSPC1, SFPQ and NONO) and NEAT1, a long noncoding RNA (lncRNA), are investigated in developing and adult mouse testes. Core DBHS proteins are markers for the distinct subnuclear domain termed paraspeckles, while a long NEAT1 isoform scaffold facilitates paraspeckle nucleation. Paraspeckles contain many proteins (>40) and are broadly involved in RNA metabolism, including transcriptional regulation by protein sequestration, nuclear retention of A-to-I edited RNA transcripts to regulate translation and promoting survival during cellular stress. Immunohistochemistry reveals cell-specific profiles for core DBHS paraspeckle protein expression, indicating their functional diversity. PSPC1 is an androgen receptor co-activator, and it is detected in differentiating Sertoli cell nuclei from day 15 onwards, as they develop androgen responsiveness. PSPC1 is nuclear in the most mature male germ cell type present at each age, from foetal to adult life. In adult mouse testes, PSPC1 and SFPQ are present in Sertoli cells, spermatocytes and round spermatids, while the NEAT1 lncRNA appears in the punctate nuclear foci delineating paraspeckles only within Leydig cells. Identification of NEAT1 in the cytoplasm of spermatogonia and spermatocytes must reflect non-paraspeckle-related functions. NONO was absent from germ cells but nuclear in Sertoli cells. Reciprocal nuclear profiles of PSPC1 and γ-H2AX in spermatogenic cells suggest that each performs developmentally regulated roles in stress responses. These findings demonstrate paraspeckles and paraspeckle-related proteins contribute to diverse functions during testis development and spermatogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células Intersticiales del Testículo/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Masculino , Ratones , Factor de Empalme Asociado a PTB/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Células de Sertoli/metabolismo , Testículo/crecimiento & desarrollo
14.
Cell Microbiol ; 20(8): e12848, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29582535

RESUMEN

West Nile virus (WNV) is a single-stranded, positive sense RNA virus of the family Flaviviridae and is a significant pathogen of global medical importance. Flavivirus replication is known to be exclusively cytoplasmic, but we show here for the first time that access to the nucleus of the WNV strain Kunjin (WNVKUN ) RNA-dependent RNA polymerase (protein NS5) is central to WNVKUN virus production. We show that treatment of cells with the specific nuclear export inhibitor leptomycin B (LMB) results in increased NS5 nuclear accumulation in WNVKUN -infected cells and NS5-transfected cells, indicative of nucleocytoplasmic shuttling under normal conditions. We used site-directed mutagenesis to identify the nuclear localisation sequence (NLS) responsible for WNVKUN NS5 nuclear targeting, observing that mutation of this NLS resulted in exclusively cytoplasmic accumulation of NS5 even in the presence of leptomycin B. Introduction of NS5 NLS mutations into FLSDX, an infectious clone of WNVKUN , resulted in lethality, suggesting that the ability of NS5 to traffic into the nucleus in integral to WNVKUN replication. This study thus shows for the first time that NLS-dependent trafficking into the nucleus during infection of WNVKUN NS5 is critical for viral replication. Excitingly, specific inhibitors of NS5 nuclear import reduce WNVKUN virus production, proving the principle that inhibition of WNVKUN NS5 nuclear import is a viable therapeutic avenue for antiviral drug development in the future.


Asunto(s)
Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Virus del Nilo Occidental/enzimología , Virus del Nilo Occidental/fisiología , Animales , Chlorocebus aethiops , Inhibidores Enzimáticos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Mutagénesis Sitio-Dirigida , Señales de Localización Nuclear , Transporte de Proteínas , Células Vero , Proteínas no Estructurales Virales/genética , Ensayo de Placa Viral
15.
Biochem J ; 475(16): 2699-2712, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30045875

RESUMEN

Importin 13 (IPO13) is a key member of the importin ß superfamily, which can transport cargoes both into and out of the nucleus to contribute to a variety of important cellular processes. IPO13 is known to undergo phosphorylation, but the impact of this on function has not been investigated. Here, we show for the first time that IPO13 is phosphorylated by cAMP-dependent protein kinase A specifically at serine 193. Results from fluorescence recovery after photobleaching and fluorescence loss in photobleaching approaches establish that negative charge at serine 193 through phosphorylation or point mutation both reduces IPO13 nuclear import and increases its nuclear export. Importantly, phosphorylation also appears to enhance cargo interaction on the part of IPO13, with significant impact on localization, as shown for the Pax6 homeobox-containing transcription partner. This is the first report that IPO13 can be phosphorylated at Ser193 and that this modification regulates IPO13 subcellular localization and nucleocytoplasmic transport function, with important implications for IPO13's role in development and other processes.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Citoplasma/genética , Células HeLa , Humanos , Carioferinas/genética , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Fosforilación/fisiología
16.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 546-561, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27993670

RESUMEN

Importin 13 (Imp13) is a bidirectional nuclear transporter of proteins involved in a range of important cellular processes, with an N-terminally truncated inhibitory isoform (tImp13) specifically expressed in testis. To gain insight into tImp13 function, we performed a yeast-2-hybrid screen from a human testis cDNA library, identifying for the first time a suite of interactors with roles in diverse cellular process. We validated the interaction of tImp13 with Eukaryotic translation initiation factor 4γ2 (EIF4G2) and High mobility group containing protein 20A (HMG20A), benchmarking that with glucocorticoid receptor (GR), a known Imp13 interactor expressed in testis. Coimmunoprecipitation assays indicated association of both tImp13 and Imp13 with EIF4G2, HMG20A and GR. Quantitative confocal microscopic analysis revealed the ability of tImp13 to inhibit the nuclear localisation of EIF4G2, HMG20A and GR, as well as that of Imp13 to act as a nuclear exporter for both EIF4G2 and HMG20A, and as a nuclear importer for GR. The physiological relevance of these results was highlighted by the cytoplasmic localisation of EIF4G2, HMG20A and GR in pachytene spermatocytes/round spermatids in the murine testis where tImp13 is present at high levels, in contrast to the nuclear localisation of HMG20A and GR in spermatogonia, where tImp13 is largely absent. Interestingly, Imp13, EIF4G2, HMG20A and GR were found together in the acrosome vesicle of murine epididymal spermatozoa. Collectively, our findings show, for the first time, that tImp13 may have a functional role in the mature spermatozoa, in addition to that in the meiotic germ cells of the testis.


Asunto(s)
Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Carioferinas/metabolismo , Espermátides/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Animales , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Biblioteca de Genes , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Carioferinas/genética , Masculino , Ratones , Unión Proteica , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Espermátides/crecimiento & desarrollo , Espermátides/ultraestructura , Espermatocitos/crecimiento & desarrollo , Espermatocitos/ultraestructura , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
BMC Genomics ; 19(1): 238, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29621972

RESUMEN

BACKGROUND: A strong focus of the post-genomic era is mining of the non-coding regulatory genome in order to unravel the function of regulatory elements that coordinate gene expression (Nat 489:57-74, 2012; Nat 507:462-70, 2014; Nat 507:455-61, 2014; Nat 518:317-30, 2015). Whole-genome approaches based on next-generation sequencing (NGS) have provided insight into the genomic location of regulatory elements throughout different cell types, organs and organisms. These technologies are now widespread and commonly used in laboratories from various fields of research. This highlights the need for fast and user-friendly software tools dedicated to extracting cis-regulatory information contained in these regulatory regions; for instance transcription factor binding site (TFBS) composition. Ideally, such tools should not require prior programming knowledge to ensure they are accessible for all users. RESULTS: We present TrawlerWeb, a web-based version of the Trawler_standalone tool (Nat Methods 4:563-5, 2007; Nat Protoc 5:323-34, 2010), to allow for the identification of enriched motifs in DNA sequences obtained from next-generation sequencing experiments in order to predict their TFBS composition. TrawlerWeb is designed for online queries with standard options common to web-based motif discovery tools. In addition, TrawlerWeb provides three unique new features: 1) TrawlerWeb allows the input of BED files directly generated from NGS experiments, 2) it automatically generates an input-matched biologically relevant background, and 3) it displays resulting conservation scores for each instance of the motif found in the input sequences, which assists the researcher in prioritising the motifs to validate experimentally. Finally, to date, this web-based version of Trawler_standalone remains the fastest online de novo motif discovery tool compared to other popular web-based software, while generating predictions with high accuracy. CONCLUSIONS: TrawlerWeb provides users with a fast, simple and easy-to-use web interface for de novo motif discovery. This will assist in rapidly analysing NGS datasets that are now being routinely generated. TrawlerWeb is freely available and accessible at: http://trawler.erc.monash.edu.au .


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , ADN/química , ADN/metabolismo , Humanos , Internet , Mesotelina , Ratones , Motivos de Nucleótidos , Ratas , Factores de Transcripción/metabolismo
18.
PLoS Pathog ; 12(9): e1005886, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27622521

RESUMEN

Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization.


Asunto(s)
Núcleo Celular/metabolismo , Virus del Dengue/fisiología , Señales de Localización Nuclear/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Transporte Activo de Núcleo Celular , Sustitución de Aminoácidos , Animales , Línea Celular , Núcleo Celular/virología , Cricetinae , Humanos , Mutación Missense , Señales de Localización Nuclear/genética , Dominios Proteicos , Proteínas no Estructurales Virales/genética
19.
Adv Exp Med Biol ; 1062: 199-213, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29845535

RESUMEN

Signal-dependent movement of proteins into and out of the nucleus through the importin superfamily of transporters is central to the replication of many viruses in infected cells, including RNA viruses such as the flavivirus Dengue virus (DENV). DENV non-structural protein 5 (NS5) traffics into and out of the host cell nucleus/nucleolus, being observed in the nucleus, although to differing extents, very early in infection in the case of all 4 DENV serotypes; with results from both reverse genetics and inhibitor studies indicating that this trafficking is critical to DENV infection. Knowledge of the transporters and targeting signals responsible for nuclear trafficking of NS5 has enabled inhibitors of DENV NS5 nuclear import to be identified using a novel screening/counterscreen approach. N-(4-hydroxyphenyl) retinamide (4-HPR) is of particular interest as a specific, non-toxic inhibitor able to protect against infection by all four serotypes of DENV, as well as the severe, antibody-enhanced form of DENV infection, in a lethal mouse model. Since 4-HPR can also inhibit DENV-related flaviviruses of medical significance such as West Nile Virus and Zika virus, it is of great interest for future commercialisation. Targeting nucleocytoplasmic trafficking of flavivirus proteins promises to be a powerful strategy to counter flaviviruses, for which the development of protective vaccines has thus far proven problematic.


Asunto(s)
Transporte Activo de Núcleo Celular/efectos de los fármacos , Antivirales/farmacología , Virus del Dengue/metabolismo , Dengue/virología , Proteínas no Estructurales Virales/metabolismo , Animales , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Humanos , Transporte de Proteínas/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética
20.
PLoS Genet ; 11(3): e1005090, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25781171

RESUMEN

Male infertility affects at least 5% of reproductive age males. The most common pathology is a complex presentation of decreased sperm output and abnormal sperm shape and motility referred to as oligoasthenoteratospermia (OAT). For the majority of OAT men a precise diagnosis cannot be provided. Here we demonstrate that leucine-rich repeats and guanylate kinase-domain containing isoform 1 (LRGUK-1) is required for multiple aspects of sperm assembly, including acrosome attachment, sperm head shaping and the initiation of the axoneme growth to form the core of the sperm tail. Specifically, LRGUK-1 is required for basal body attachment to the plasma membrane, the appropriate formation of the sub-distal appendages, the extension of axoneme microtubules and for microtubule movement and organisation within the manchette. Manchette dysfunction leads to abnormal sperm head shaping. Several of these functions may be achieved in association with the LRGUK-1 binding partner HOOK2. Collectively, these data establish LRGUK-1 as a major determinant of microtubule structure within the male germ line.


Asunto(s)
Guanilato-Quinasas/metabolismo , Infertilidad Masculina/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Secuencia de Aminoácidos , Animales , Cuerpos Basales/metabolismo , Membrana Celular/metabolismo , Guanilato-Quinasas/química , Guanilato-Quinasas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Espermatozoides/citología , Testículo/citología , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA