Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Haematologica ; 108(7): 1734-1747, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700400

RESUMEN

Integrins are heterodimeric transmembrane receptors composed of α and ß chains, with an N-terminal extracellular domain forming a globular head corresponding to the ligand binding site. Integrins regulate various cellular functions including adhesion, migration, proliferation, spreading and apoptosis. On platelets, integrins play a central role in adhesion and aggregation on subendothelial matrix proteins of the vascular wall, thereby ensuring hemostasis. Platelet integrins belong either to the ß1 family (α2ß1, α5ß1 and α6ß1) or to the ß3 family (αIIbß3 and αvß3). On resting platelets, integrins can engage their ligands when the latter are immobilized but not in their soluble form. The effects of various agonists promote an inside-out signal in platelets, increasing the affinity of integrins for their ligands and conveying a modest signal reinforcing platelet activation, called outside-in signaling. This outside-in signal ensures platelet adhesion, shape change, granule secretion and aggregation. In this review, we examine the role of each platelet integrin in hemostatic plug formation, hemostasis and arterial thrombosis and also beyond these classical functions, notably in tumor metastasis and sepsis.


Asunto(s)
Plaquetas , Trombosis , Humanos , Plaquetas/metabolismo , Integrinas/metabolismo , Ligandos , Hemostasis , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/patología , Agregación Plaquetaria
2.
Arterioscler Thromb Vasc Biol ; 40(9): 2127-2142, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32698684

RESUMEN

OBJECTIVE: Atherothrombosis occurs upon rupture of an atherosclerotic plaque and leads to the formation of a mural thrombus. Computational fluid dynamics and numerical models indicated that the mechanical stress applied to a thrombus increases dramatically as a thrombus grows, and that strong inter-platelet interactions are essential to maintain its stability. We investigated whether GPVI (glycoprotein VI)-mediated platelet activation helps to maintain thrombus stability by using real-time video-microscopy. Approach and Results: We showed that GPVI blockade with 2 distinct Fab fragments promoted efficient disaggregation of human thrombi preformed on collagen or on human atherosclerotic plaque material in the absence of thrombin. ACT017-induced disaggregation was achieved under arterial blood flow conditions, and its effect increased with wall shear rate. GPVI regulated platelet activation within a growing thrombus as evidenced by the loss in thrombus contraction when GPVI was blocked, and the absence of the disaggregating effect of an anti-GPVI agent when the thrombi were fully activated with soluble agonists. The GPVI-dependent thrombus stabilizing effect was further supported by the fact that inhibition of any of the 4 key immunoreceptor tyrosine-based motif signalling molecules, src-kinases, Syk, PI3Kß, or phospholipase C, resulted in kinetics of thrombus disaggregation similar to ACT017. The absence of ACT017-induced disaggregation of thrombi from 2 afibrinogenemic patients suggests that the role of GPVI requires interaction with fibrinogen. Finally, platelet disaggregation of fibrin-rich thrombi was also promoted by ACT017 in combination with r-tPA (recombinant tissue plasminogen activator). CONCLUSIONS: This work identifies an unrecognized role for GPVI in maintaining thrombus stability and suggests that targeting GPVI could dissolve platelet aggregates with a poor fibrin content.


Asunto(s)
Afibrinogenemia/sangre , Plaquetas/efectos de los fármacos , Fibrinógeno/metabolismo , Fragmentos Fab de Inmunoglobulinas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Trombosis/tratamiento farmacológico , Afibrinogenemia/diagnóstico , Afibrinogenemia/genética , Plaquetas/metabolismo , Simulación por Computador , Fibrinógeno/genética , Fibrinolíticos/farmacología , Humanos , Cinética , Microscopía por Video , Modelos Biológicos , Glicoproteínas de Membrana Plaquetaria/metabolismo , Transducción de Señal , Estrés Mecánico , Trombina/metabolismo , Trombosis/sangre , Trombosis/diagnóstico , Trombosis/genética
3.
Thromb Haemost ; 122(5): 767-776, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34598304

RESUMEN

OBJECTIVE: Integrins are key regulators of various platelet functions. The pathophysiological importance of most platelet integrins has been investigated, with the exception of α5ß1, a receptor for fibronectin. The aim of this study was to characterize the role of α5ß1 in megakaryopoiesis, platelet function, and to determine its importance in hemostasis and arterial thrombosis. APPROACH AND RESULTS: We generated a mouse strain deficient for integrin α5ß1 on megakaryocytes and platelets (PF4Cre-α5-/-). PF4Cre-α5-/- mice were viable, fertile, and presented no apparent signs of abnormality. Megakaryopoiesis appears unaltered as evidence by a normal megakaryocyte morphology and development, which is in agreement with a normal platelet count. Expression of the main platelet receptors and the response of PF4Cre-α5-/- platelets to a series of agonists were all completely normal. Adhesion and aggregation of PF4Cre-α5-/- platelets under shear flow on fibrinogen, laminin, or von Willebrand factor were unimpaired. In contrast, PF4Cre-α5-/- platelets displayed a marked decrease in adhesion, activation, and aggregation on fibrillar cellular fibronectin and collagen. PF4Cre-α5-/- mice presented no defect in a tail-bleeding time assay and no increase in inflammatory bleeding in a reverse passive Arthus model and a lipopolysaccharide pulmonary inflammation model. Finally, no defects were observed in three distinct experimental models of arterial thrombosis based on ferric chloride-induced injury of the carotid artery, mechanical injury of the abdominal aorta, or laser-induced injury of mesenteric vessels. CONCLUSION: In summary, this study shows that platelet integrin α5ß1 is a key receptor for fibrillar cellular fibronectin but is dispensable in hemostasis and arterial thrombosis.


Asunto(s)
Adhesividad Plaquetaria , Trombosis , Animales , Plaquetas/metabolismo , Fibronectinas/metabolismo , Hemostasis , Humanos , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Ratones , Trombosis/metabolismo
4.
Res Pract Thromb Haemost ; 5(5): e12551, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34263103

RESUMEN

BACKGROUND: The interplay between platelets and fibrinogen is the cornerstone of thrombus formation. Integrin αIIbß3 is the main platelet adhesion receptor for fibrinogen and mediates an outside-in signal upon ligand binding that reinforces platelet activation. In addition, FcγRIIA and glycoprotein VI (GPVI) contribute to platelet activation on fibrinogen, thereby participating in thrombus growth and stability. To date, the relative importance of these two immunoreceptor tyrosine-based activation motif-bearing receptors in these processes remains unknown. OBJECTIVE: The aim of this study was to evaluate the relative contributions of FcγRIIA and GPVI to platelet activation on fibrinogen and subsequent thrombus growth and stability. METHODS: We evaluated human and mouse platelet adhesion to fibrinogen in static assays and a flow-based approach to evaluate the contribution of FcγRIIA and GPVI to thrombus growth and stability. RESULTS: We first confirmed that integrin αIIbß3 is the key receptor supporting platelet adhesion and spreading on fibrinogen. Using human platelets treated with pharmacological blocking agents and transgenic mouse platelets expressing human receptors, data indicate that GPVI, but not FcγRIIA, plays a prominent role in platelet activation on fibrinogen. Moreover, using a flow-based assay, we observed that blockade of GPVI with 1G5, but not FcγRIIA with IV.3, prevents thrombus growth. Finally, we observed that 1G5, but not IV.3, promotes the disaggregation of thrombi formed on collagen in vitro. CONCLUSION: This study provides evidence that GPVI, but not FcγRIIA, induces platelet activation and spreading on fibrinogen, and promotes thrombus buildup and stability.

5.
Cancers (Basel) ; 9(10)2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28956830

RESUMEN

Platelets are small anucleated cell fragments that ensure the arrest of bleeding after a vessel wall injury. They are also involved in non-hemostatic function such as development, immunity, inflammation, and in the hematogeneous phase of metastasis. While the role of platelets in tumor metastasis has been recognized for 60 years, the molecular mechanism underlying this process remains largely unclear. Platelets physically and functionally interact with various tumor cells through surface receptors including integrins. Platelets express five integrins at their surface, namely α2ß1, α5ß1, α6ß1, αvß3, and αIIbß3, which bind preferentially to collagen, fibronectin, laminin, vitronectin, and fibrinogen, respectively. The main role of platelet integrins is to ensure platelet adhesion and aggregation at sites of vascular injury. Two of these, α6ß1 and αIIbß3, were proposed to participate in platelet-tumor cell interaction and in tumor metastasis. It has also been reported that pharmacological agents targeting both integrins efficiently reduce experimental metastasis, suggesting that platelet integrins may represent new anti-metastatic targets. This review focuses on the role of platelet integrins in tumor metastasis and discusses whether these receptors may represent new potential targets for novel anti-metastatic approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA