RESUMEN
OBJECTIVES: This narrative review addresses relevant points about Chapare virus (CHAV) entry in oral cells, CHAV transmission, and preventive strategies in dental clinical settings. It is critical in dentistry due to the frequent presence of gingival hemorrhage occurred in CHAV-infected patients. MATERIALS AND METHODS: Studies related to CHAV were searched in MEDLINE/PubMed, Scopus, EMBASE, and Web-of-Science databases without language restriction or year of publication. RESULTS: Recently, the PAHO/WHO and CDC indicate a presence of human-to-human transmission of CHAV associated with direct contact with saliva, blood, or urine, and also through droplets or aerosols created in healthcare procedures. CHAV was detected in human oropharyngeal saliva and gingival bleeding was confirmed in all cases of CHAV hemorrhagic fever, including evidence of nosocomial CHAV transmission in healthcare workers. We revisited the human transferrin receptor 1 (TfR1) expression in oral, nasal, and salivary glands tissues, as well as, we firstly identified the critical residues in the pre-glycoprotein (GP) complex of CHAV that interacts with human TfR1 using cutting-edge in silico bioinformatics platforms associated with molecular dynamic analysis. CONCLUSIONS: In this multidisciplinary view, we also point out critical elements to provide perspectives on the preventive strategies for dentists and frontline healthcare workers against CHAV, and in the implementation of salivary diagnostic platforms for virus detection, which can be critical to an urgent plan to prevent human-to-human transmission based on current evidence. CLINICAL RELEVANCE: The preventive strategies in dental clinical settings are pivotal due to the aerosol-generating procedures in dentistry with infected patients or suspected cases of CHAV infection.
Asunto(s)
Biología Computacional , Fiebre Hemorrágica Americana , Humanos , Personal de Salud , OdontologíaRESUMEN
INTRODUCTION: Lantana trifolia L. (Verbenaceae) is a shrubby plant. In folk medicine, its leaves are used in the form of infusions and syrups to treat angina, coughs, and colds; they are also applied as tranquilizer. Previous studies have reported the antimicrobial potential of the compounds present in L. trifolia leaves. OBJECTIVES: To report the anti-Candida activities of the fractions obtained from the fruits and leaves of two L. trifolia specimens. METHODS: The L. trifolia fractions were submitted to UFLC-DAD-(+)-ESI-MS/MS, and the data were analyzed by using multivariate statistical tools (PCA, PLS-DA) and spectral similarity analyses based on molecular networking, which aided dereplication of the bioactive compounds. Additionally, NMR analyses were performed to confirm the chemical structure of some of the major compounds in the fractions. RESULTS: The ethyl acetate fractions presented MIC values lower than 100 µg mL-1 against the three Candida strains evaluated herein (C. albicans, C. tropicalis, and C. glabrata). Fractions FrPo AcOEt, FrPe AcOEt, and FrPe nBut had MIC values of 1.46, 2.93, and 2.93 µg mL-1 against C. glabrata, respectively. These values resembled the MIC value of amphotericin B, the positive control (0.5-1.0 µg mL-1), against this same strain. Cytotoxicity was measured and used to calculate the selectivity index. CONCLUSION: On the basis of our data, the most active fractions in the antifungal assay were more selective against C. glabrata than against non-infected cells. The analytical approach adopted here allowed us to annotate 29 compounds, nine of which were bioactive (PLS-DA results) and belong to the class of phenolic compounds.
Asunto(s)
Antineoplásicos , Lantana , Antifúngicos/farmacología , Antifúngicos/análisis , Espectrometría de Masas en Tándem , Lantana/química , Frutas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metabolómica , Hojas de la Planta/químicaRESUMEN
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/metabolismo , Virus Chikungunya/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/farmacología , Proteínas no Estructurales Virales/uso terapéutico , Cobalto/farmacología , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
Mayaro virus (MAYV), first isolated in 1954 in Trinidad and Tobago islands, is the causative agent of Mayaro fever, a disease characterized by fever, rashes, headaches, myalgia, and arthralgia. The infection can progress to a chronic condition in over 50% of cases, with persistent arthralgia, which can lead to the disability of the infected individuals. MAYV is mainly transmitted through the bite of the female Haemagogus spp. mosquito genus. However, studies demonstrate that Aedes aegypti is also a vector, contributing to the spread of MAYV beyond endemic areas, given the vast geographical distribution of the mosquito. Besides, the similarity of antigenic sites with other Alphavirus complicates the diagnoses of MAYV, contributing to underreporting of the disease. Nowadays, there are no antiviral drugs available to treat infected patients, being the clinical management based on analgesics and non-steroidal anti-inflammatory drugs. In this context, this review aims to summarize compounds that have demonstrated antiviral activity against MAYV in vitro, as well as discuss the potentiality of viral proteins as targets for the development of antiviral drugs against MAYV. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential anti-MAYV drug candidates.
Asunto(s)
Aedes , Alphavirus , Animales , Humanos , Femenino , Mosquitos Vectores , Antivirales/farmacología , Antivirales/uso terapéutico , ArtralgiaRESUMEN
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Asunto(s)
Enterovirus , Nanopartículas , Adulto , Niño , Lactante , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Heces , Huésped InmunocomprometidoRESUMEN
Zika virus infection is associated to severe diseases such as congenital microcephaly and Zika fever causing serious harm to humans and special concern to health systems in low-income countries. Currently, there are no approved drugs against the virus, and the development of anti-Zika virus drugs is thus urgent. The present investigation describes the discovery and hit expansion of a N-acyl-2-aminobenzothiazole series of compounds against Zika virus replication. A structure-activity relationship study was obtained with the synthesis and evaluation of anti-Zika virus activity and cytotoxicity on Vero cells of nineteen derivatives. The three optimized compounds were 2.2-fold more potent than the initial hit and 20.9, 7.7 and 6.4-fold more selective. Subsequent phenotypic and biochemical assays were performed to evidence whether non-structural proteins, such as the complex NS2B-NS3pro, are related to the mechanism of action of the most active compounds.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Chlorocebus aethiops , Humanos , Células Vero , Infección por el Virus Zika/tratamiento farmacológico , Relación Estructura-Actividad , Replicación Viral , Antivirales/química , Proteínas no Estructurales ViralesRESUMEN
In this narrative review, we aim to point out the close relationship between mpox virus (MPXV) infection and the role of saliva as a diagnostic tool for mpox, considering the current molecular approach and in the perspective of OMICs application. The MPXV uses the host cell's rough endoplasmic reticulum, ribosomes, and cytoplasmic proteins to replicate its genome and synthesize virions for cellular exit. The presence of oral mucosa lesions associated with mpox infection is one of the first signs of infection; however, current diagnostic tools find it difficult to detect the virus before the rashes begin. MPXV transmission occurs through direct contact with an infected lesion and infected body fluids, including saliva, presenting a potential use of this fluid for diagnostic purposes. Currently available diagnostic tests for MPXV detection are performed either by real-time quantitative PCR (RT-qPCR) or ELISA, which presents several limitations since they are invasive tests. Despite current clinical trials with restricted sample size, MPXV DNA was detected in saliva with a sensitivity of 85%-100%. In this context, the application of transcriptomics, metabolomics, lipidomics, or proteomics analyses coupled with saliva can identify novel disease biomarkers. Thus, it is important to note that the identification and quantification of salivary DNA, RNA, lipid, protein, and metabolite can provide novel non-invasive biomarkers through the use of OMICs platforms aiding in the early detection and diagnosis of MPXV infection. Untargeted mass spectrometry (MS)-based proteomics reveals that some proteins also expressed in saliva were detected with greater expression differences in blood plasma when comparing mpox patients and healthy subjects, suggesting a promising alternative to be applied in screening or diagnostic platforms for mpox salivary diagnostics coupled to OMICs.
Asunto(s)
Líquidos Corporales , Enfermedades Transmisibles , Mpox , Humanos , Patología Bucal , SalivaRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in Wuhan, China, is the causative agent of the coronavirus disease 2019 (COVID-19). Since its first notification in São Paulo state (SP) on 26th February 2020, more than 22,300,000 cases and 619,000 deaths were reported in Brazil. In early pandemic, SARS-CoV-2 spread locally, however, over time, this virus was disseminated to other regions of the country. Herein, we performed genomic sequencing and phylogenetic analysis of SARS-CoV-2 using 20 clinical samples of COVID-19 confirmed cases from 9 cities of Minas Gerais state (MG), in order to evaluate the molecular properties of circulating viral strains in this locality from March to May 2020. Our analyses demonstrated the circulation of B.1 lineage isolates in the investigated locations and nucleotide substitutions were observed into the genomic regions related to important viral structures. Additionally, sequences generated in this study clustered with isolates from SP, suggesting a dissemination route between these two states. Alternatively, monophyletic groups of sequences from MG and other states or country were observed, indicating independent events of virus introduction. These results reinforce the need of genomic surveillance for understand the ongoing spread of emerging viral pathogens.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Filogenia , Brasil/epidemiología , Genoma Viral/genéticaRESUMEN
Hepatitis C virus (HCV) infection is a worldwide public health burden and it is estimated that 185 million people are or have previously been infected worldwide. There is no effective vaccine for prevention of HCV infection; however, a number of drugs are available for the treatment of infection. The availability of direct-acting antivirals (DAAs) has dramatically improved therapeutic options for HCV genotype 1. However, the high costs and potential for development of resistance presented by existing treatment demonstrate the need for the development of more efficient new antivirals, or combination of therapies that target different stages of the viral lifecycle. Over the past decades, there has been substantial study of compounds extracted from plants that have activity against a range of microorganisms that cause human diseases. An extensive variety of natural compounds has demonstrated antiviral action worldwide, including anti-HCV activity. In this context, plant-derived compounds can provide an alternative approach to new antivirals. In this review, we aim to summarize the most promising plant-derived compounds described to have antiviral activity against HCV.
Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Extractos Vegetales/farmacología , Antivirales/química , Productos Biológicos/química , Productos Biológicos/farmacología , Línea Celular , Células Cultivadas , Hepatitis C/virología , Humanos , Extractos Vegetales/química , Relación Estructura-Actividad , Ensamble de Virus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Liberación del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
Hepatitis C virus (HCV) affects about 170 million people worldwide. The current treatment has a high cost and variable response rates according to the virus genotype. Acridones, a group of compounds extracted from natural sources, showed potential antiviral actions against HCV. Thus, this study aimed to evaluate the effect of a panel of 14 synthetic acridones on the HCV life cycle. The compounds were screened using an Huh7.5 cell line stably harbouring the HCV genotype 2a subgenomic replicon SGR-Feo-JFH-1. Cells were incubated in the presence or absence of compounds for 72 h and cell viability and replication levels were assessed by MTT and luciferase assays, respectively. At a concentration of 5 µM the acridone Fac4 exhibited a >90â% inhibition of HCV replication with no effect on cell viability. The effects of Fac4 on virus replication, entry and release steps were evaluated in Huh7.5 cells infected with the JFH-1 isolate of HCV (HCVcc). Fac4 inhibited JFH-1 replication to approximately 70â%, while no effect was observed on virus entry. The antiviral activity of Fac4 was also observed on viral release, with almost 80â% of inhibition. No inhibitory effect was observed against genotype 3 replication. Fac4 was able to intercalate into dsRNA, however did not inhibit NS5B polymerase activity or translation driven by the HCV IRES. Although its mode of action is partly understood, Fac4 presents significant inhibition of HCV replication and can therefore be considered as a candidate for the development of a future anti-HCV treatment.
Asunto(s)
Acridonas/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Replicación Viral/efectos de los fármacos , Acridonas/síntesis química , Antivirales/síntesis química , Genoma Viral/efectos de los fármacos , Hepacivirus/genética , Hepatitis C/virología , Humanos , Replicón/efectos de los fármacos , Internalización del Virus/efectos de los fármacosAsunto(s)
Betacoronavirus , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Coronavirus , Odontología , Neumonía Viral/diagnóstico , Saliva/virología , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Betacoronavirus/patogenicidad , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Humanos , Boca/virología , Pandemias , Neumonía Viral/transmisión , Pruebas en el Punto de Atención , Sistema Respiratorio/virología , SARS-CoV-2RESUMEN
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.
Asunto(s)
Evolución Molecular , Variación Genética , Genoma Viral , Genotipo , Filogenia , Américas/epidemiología , Humanos , Alphavirus/genética , Alphavirus/clasificación , Alphavirus/aislamiento & purificación , Animales , Recombinación Genética , Infecciones por Alphavirus/virología , Infecciones por Alphavirus/epidemiologíaRESUMEN
BACKGROUND: Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS: The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS: The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS: Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.
Asunto(s)
Antivirales , Fiebre Chikungunya , Virus Chikungunya , Sulfadoxina , Virus Chikungunya/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Animales , Línea Celular , Sulfadoxina/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Cricetinae , Bases de Schiff/farmacología , Plata/farmacología , Plata/química , Replicación Viral/efectos de los fármacos , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Humanos , AldehídosRESUMEN
The current detection method for Chikungunya Virus (CHIKV) involves an invasive and costly molecular biology procedure as the gold standard diagnostic method. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for the detection of CHIKV infection is imperative for public health. The portable Fourier-transform infrared coupled with Attenuated Total Reflection (ATR-FTIR) platform was applied to discriminate systemic diseases using saliva, however, the salivary diagnostic application in viral diseases is less explored. The study aimed to identify unique vibrational modes of salivary infrared profiles to detect CHIKV infection using chemometrics and artificial intelligence algorithms. Thus, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with CHIKV (20 µl, 1 X 105 PFU/ml, n = 6) or vehicle (20 µl, n = 7). Saliva and serum samples were collected on day 3 (due to the peak of viremia). CHIKV infection was confirmed by Real-time PCR in the serum of CHIKV-infected mice. The best pattern classification showed a sensitivity of 83%, specificity of 86%, and accuracy of 85% using support vector machine (SVM) algorithms. Our results suggest that the salivary ATR-FTIR platform can discriminate CHIKV infection with the potential to be applied as a non-invasive, sustainable, and cost-effective detection tool for this emerging disease.
Asunto(s)
Algoritmos , Inteligencia Artificial , Fiebre Chikungunya , Virus Chikungunya , Saliva , Animales , Saliva/virología , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/virología , Virus Chikungunya/aislamiento & purificación , Virus Chikungunya/genética , Ratones , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Arboviruses are etiological agents in an extensive group of emerging diseases with great clinical relevance in Brazil, due to the wide distribution of their vectors and the favorable environmental conditions. Among them, the Mayaro virus (MAYV) has drawn attention since its emergence as the etiologic agent of Mayaro fever, a highly debilitating disease. To study viral replication and identify new drug candidates, traditional antiviral assays based on viral antigens and/or plaque assays have been demonstrating low throughput, making it difficult to carry out larger-scale assays. Therefore, we developed and characterized two DNA-launched infectious clones reporter viruses based on the MAYV strain BeAr 20290 containing the reporter genes of firefly luciferase (FLuc) and nanoluciferase (NLuc), designated as MAYV-firefly and MAYV-nanoluc, respectively. The viruses replicated efficiently with similar properties to the parental wild-type MAYV, and luminescence expression levels reflected viral replication. Reporter genes were also preserved during passage in cell culture, remaining stably expressed for one round of passage for MAYV-firefly and three rounds for MAYV-nanoluc. Employing the infectious clone, we described the effect of Rimantadine, an FDA-approved Alzheimer's drug, as a repurposing agent for MAYV but with a broad-spectrum activity against Zika virus infection. Additionally, we validated MAYV-nanoluc as a tool for antiviral drug screening using the compound EIDD-2749 (4'-Fluorouridine), which acts as an inhibitor of alphavirus RNA-dependent RNA polymerase.
RESUMEN
Oropouche virus (OROV) is an emerging vector-borne arbovirus found in South America that causes Oropouche fever, a febrile infection similar to dengue fever. It has a high epidemic potential, causing illness in over 500,000 cases diagnosed since the virus was first discovered in 1955. Currently, the prevention of human viral infection depends on vaccination, but availability for many viruses is limited, and they are classified as neglected viruses. At present, there are no vaccines or antiviral treatments available. An alternative approach to limiting the spread of the virus is to selectively disrupt viral replication mechanisms. Here, we demonstrate the inhibitory effect of acridones, which efficiently inhibited viral replication by 99.9 % in vitro. To evaluate possible mechanisms of action, we conducted tests with dsRNA, an intermediate in virus replication, as well as MD simulations, docking, and binding free energy analysis. The results showed a strong interaction between FAC21 and the OROV endonuclease, which possibly limits the interaction of viral RNA with other proteins. Therefore, our results suggest a dual mechanism of antiviral action, possibly caused by ds-RNA intercalation. In summary, our findings demonstrate that a new generation of antiviral drugs could be developed based on the selective optimization of molecules.
RESUMEN
Infectious diseases remain as a significant cause of thousands of deaths annually worldwide. Therefore, this study aimed to investigate the antimicrobial and antiparasitic activity of the crude hydroalcoholic extract and compounds isolated from Brazilian Red Propolis (BRP) against oral pathogens and Toxoplasma gondii, using in vitro, in vivo and in silico approaches. Antimicrobial and synergistic activities were determined using the broth dilution method and the checkerboard assay, respectively. Antibiofilm activity was evaluated by staining with 2â¯% crystal violet and counting microorganisms. In vivo infection was carried out in Caenorhabditis elegans AU37 larvae and in silico analysis was performed using molecular docking simulations. The effect on growth modulation of T. gondii was evaluated through a ß-galactosidase colorimetric assay. Minimum Inhibitory Concentration values ranged from 3.12 to 400⯵g/mL. Biofilm Minimum Inhibitory Concentration (MICB50) values ranged from 6.25 to 375⯵g/mL, with a significant reduction in the number of viable cells. Furthermore, Guttiferone E and the crude extract reduced cell aggregation and caused damage to the biofilm cell wall. The highest concentrations of the crude extract and Guttiferone E increased the survival and reduced the risk of death of infected and treated larvae. Guttiferone E and Oblongifolin B inhibited the intracellular proliferation of T. gondii and demonstrated several targets of action against bacteria and T. gondii through in silico analysis. These data demonstrate that BRP has antimicrobial and antiparasitic activity against pathogens of clinical relevance, and can be used in the future as phytomedicines.
RESUMEN
The genus Mammarenavirus belonging to the family Arenaviridae encompasses pathogenic viral species capable of triggering severe diseases in humans, causing concern for the health system due to the high fatality rate associated with them. Currently, there is a dearth of specific therapies against pathogens of the genus. Natural products isolated from plants have impacted the development of drugs against several diseases. The Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE) database offers several natural compounds with antimicrobial activities that can be used in the development of new antiviral drugs. In this context, here we modeled the arenavirus L protein, multifunctional machinery essential for the viral replicative cycle, making this enzyme a potential candidate for targeting the development of antivirals against genus pathogens. Using the modeled L protein, a virtual screening was performed, which suggested eleven molecules from the NuBBE database that binds to the active site of the L protein, which was promising in the in silico predictions of absorption and toxicity analysis. The NuBBE 1642 molecule proved to be the best candidate for four of the five species evaluated, acting as a possible broad-spectrum molecule. Additionally, our results showed that the L protein is highly conserved among species of the genus, as well as presenting close phylogenetic relationships between many of the species studied, strengthening its candidacy as a therapeutic target. The data presented here demonstrate that some NuBBE molecules are potential ligands for the L protein of arenaviruses, which may help to contain possible outbreaks.Communicated by Ramaswamy H. Sarma.
RESUMEN
The emergence and rapid spread outside of monkeypox virus (MPXV) to non-endemic areas has led to another global health emergency in the midst of the COVID-19 pandemic. The scientific community has sought to rapidly develop in vitro and in vivo models that could be applied in research with MPXV. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures. In vitro models are considered cost-effective and can be done in highly controlled conditions; however, they do not always resemble physiological conditions. In this way, several in vivo models are being characterized to meet the growing demand for new studies related to MPXV. In this review, we summarize the main MPXV models that have already been developed and discuss how they can contribute to advance the understanding of its pathogenesis, replication, and transmission, as well as identifying antivirals to treat infected patients.
RESUMEN
Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.