Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Funct Integr Genomics ; 24(2): 73, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598147

RESUMEN

Vitamin C, also known as ascorbic acid, is an essential nutrient that plays a critical role in many physiological processes in plants and animals. In humans, vitamin C is an antioxidant, reducing agent, and cofactor in diverse chemical processes. The established role of vitamin C as an antioxidant in plants is well recognized. It neutralizes reactive oxygen species (ROS) that can cause damage to cells. Also, it plays an important role in recycling other antioxidants, such as vitamin E, which helps maintain the overall balance of the plant's antioxidant system. However, unlike plants, humans cannot synthesize ascorbic acid or vitamin C in their bodies due to the absence of an enzyme called gulonolactone oxidase. This is why humans need to obtain vitamin C through their diet. Different fruits and vegetables contain varying levels of vitamin C. The biosynthesis of vitamin C in plants occurs primarily in the chloroplasts and the endoplasmic reticulum (ER). The biosynthesis of vitamin C is a complex process regulated by various factors such as light, temperature, and plant hormones. Recent research has identified several key genes that regulate vitamin C biosynthesis, including the GLDH and GLDH genes. The expression of these genes is known to be regulated by various factors such as light, temperature, and plant hormones. Recent studies highlight vitamin C's crucial role in regulating plant stress response pathways, encompassing drought, high salinity, and oxidative stress. The key enzymes in vitamin C biosynthesis are L-galactose dehydrogenase (GLDH) and L-galactono-1, 4-lactone dehydrogenase (GLDH). Genetic studies reveal key genes like GLDH and GLDH in Vitamin C biosynthesis, offering potential for crop improvement. Genetic variations influence nutritional content through their impact on vitamin C levels. Investigating the roles of genes in stress responses provides insights for developing resilient techniques in crop growth. Some fruits and vegetables, such as oranges, lemons, and grapefruits, along with strawberries and kiwi, are rich in vitamin C. Guava. Papaya provides a boost of vitamin C and dietary fiber. At the same time, red and yellow bell peppers, broccoli, pineapple, mangoes, and kale are additional sources of this essential nutrient, promoting overall health. In this review, we will discuss a brief history of Vitamin C and its signaling and biosynthesis pathway and summarize the regulation of its content in various fruits and vegetables.


Asunto(s)
Ácido Ascórbico , Verduras , Animales , Humanos , Antioxidantes , Frutas/genética , Reguladores del Crecimiento de las Plantas , Productos Agrícolas/genética , Transducción de Señal
2.
Plant Cell Rep ; 43(3): 80, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411713

RESUMEN

The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.


Asunto(s)
Ecosistema , Proteómica , Inteligencia Artificial , Perfilación de la Expresión Génica , Metales/toxicidad , Suelo
3.
BMC Plant Biol ; 23(1): 640, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082240

RESUMEN

Carotenoid cleavage oxygenase (CCO) is an enzyme capable of converting carotenoids into volatile, aromatic compounds and it plays an important role in the production of two significant plant hormones, i.e., abscisic acid (ABA) and strigolactone (SL). The cucumber plant genome has not been mined for genomewide identification of the CCO gene family. In the present study, we conducted a comprehensive genome-wide analysis to identify and thoroughly examine the CCO gene family within the genomic sequence of Cucumis sativus L. A Total of 10 CCO genes were identified and mostly localized in the cytoplasm and chloroplast. The CCO gene is divided into seven subfamilies i.e. 3 NCED, 3 CCD, and 1 CCD-like (CCDL) subfamily according to phylogenetic analysis. Cis-regulatory elements (CREs) analysis revealed the elements associated with growth and development as well as reactions to phytohormonal, biotic, and abiotic stress conditions. CCOs were involved in a variety of physiological and metabolic processes, according to Gene Ontology annotation. Additionally, 10 CCO genes were regulated by 84 miRNA. The CsCCO genes had substantial purifying selection acting upon them, according to the synteny block. In addition, RNAseq analysis indicated that CsCCO genes were expressed in response to phloem transportation and treatment of chitosan oligosaccharides. CsCCD7 and CsNCED2 showed the highest gene expression in response to the exogenous application of chitosan oligosaccharides to improve cold stress in cucumbers. We also found that these genes CsCCD4a and CsCCDL-a showed the highest expression in different plant organs with respect to phloem content. The cucumber CCO gene family was the subject of the first genome-wide report in this study, which may help us better understand cucumber CCO proteins and lay the groundwork for the gene family's future cloning and functional investigations.


Asunto(s)
Arabidopsis , Quitosano , Cucumis sativus , Cucumis sativus/metabolismo , Arabidopsis/genética , Filogenia , Quitosano/metabolismo , Genoma de Planta , Oxigenasas/genética , Reguladores del Crecimiento de las Plantas , Oligosacáridos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Mol Biol Rep ; 49(12): 11371-11383, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35939183

RESUMEN

BACKGROUND: Rice (Oryza sativa L.) is one of the staple foods worldwide. To feed the growing population, the improvement of rice cultivars is important. To make the improvement in the rice breeding program, it is imperative to understand the similarities and differences of the existing rice accessions to find out the genetic diversity. Previous studies demonstrated the existence of abundant elite genes in rice landraces. A genome-wide association study (GWAS) was performed for yield and yield related traits to find the genetic diversity. DESIGN: Experimental study. METHODS AND RESULTS: A total of 204 SSRs markers were used among 17 SSRs found to be located on each chromosome in the rice genome. The diversity was analyzed using different genetic characters i.e., the total number of alleles (TNA), polymorphic information content (PIC), and gene diversity by Power markers, and the values for each genetic character per marker ranged from 2 to 9, 0.332 to 0.887 and 0.423 to 0.900 respectively across the whole genome. The results of population structure identified four main groups. MTA identified several markers associated with many agronomically important traits. These results will be very useful for the selection of potential parents, recombinants, and MTAs that govern the improvements and developments of new high yielding rice varieties. CONCLUSIONS: Analysis of diversity in germplasm is important for the improvement of cultivars in the breeding program. In the present study, the diversity was analyzed with different methods and found that enormous diversity was present in the studied rice germplasm. The structure analysis found the presence of 4 genetic groups in the existing germplasm. A total of 129 marker-trait associations (MTAs) have been found in this study.


Asunto(s)
Oryza , Oryza/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Mapeo Cromosómico , Fenotipo , Variación Genética/genética
5.
Ecotoxicology ; 30(5): 794-805, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33871748

RESUMEN

Aluminum (Al3+) toxicity is one of the factors limiting crop production in acidic soils. Identifying quantitative trait loci (QTLs)/genes for tolerance to Al3+ toxicity at seed germination can aid the development of new tolerant cultivars. The segregating population derived from Pak Basmati (Indica) × Pokkali (Indica) was used for mapping QTLs linked with tolerance to Al3+ toxicity ranging from 0 to 20 mM at pH 4 ± 0.2 at germination. The favorable alleles for all new QTLs were analyzed based on germination traits, i.e., final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean germination time (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC), and growth traits, such as root length (RL), shoot length (SL), total dry biomass (TDB) and germination vigor index (GVI). The phenotypic evolution showed transgressive variations. For genome-wide mapping, 90 polymorphic SSRs with 4 gene-specific markers and Win QTL Cart were used for QTL analysis. In all, 35 QTLs for germination and 11 QTLs for seedling growth were detected in distinct chromosomal regions by composite interval mapping (CIM), and multiple interval mapping (MIM) confirmed the pleiotropy at region RM128 on chromosome 1. Based on our genetic mapping studies, the genes/QTLs underlying tolerance to Al3+ toxicity could differ for both the germination and seedling stages in segregated populations. The QTLs identified in this study could be a source of new alleles for improving tolerance to Al3+ toxicity in rice.


Asunto(s)
Oryza , Mapeo Cromosómico , Germinación , Oryza/genética , Fenotipo , Sitios de Carácter Cuantitativo , Plantones/genética
6.
ScientificWorldJournal ; 2018: 8180174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356418

RESUMEN

Rice production is decreasing by abiotic stresses like heavy metals. In such circumstances, producing food for growing human population is a challenge for plant breeders. Excess of Al3+ in soil has become threat for high yield of rice. Improvement of crop is one of potential solution for high production. The aim of this study was to develop the new method for optimization of Al3+ toxicity tolerance in indica rice at germination stag using two-way ANOVA and Duncan's multiple-range test (DMRT). Seeds of two indica rice cultivars (Pokkali and Pak Basmati) were exposed in different concentrations (control, 5 mM, 15 mM, and 20 mM) of Al3+ toxicity at pH 4 ±0.2 for two weeks. Germination traits such as final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean time of germination (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC) and growth traits such as root length (RL), shoot length (SL), total dry biomass (TDB), and germination vigour index (GVI) were measured. To obtain the maximum number of significance (≤ 0.01%) parameters in each concentration of Al3+ toxicity with control, two-way ANOVA was established and comparison of mean was done using DMRT. The results showed that 5 mM, 10 mM, and 15 mM have less significant effects on the above-mentioned parameters. However, 20 mM concentration of Al3+ produced significant effects (≤ 0.01%). Therefore, 20 mM of Al3+ is considered optimized limit for indica cultivars (Pokkali and Pak Basmati).


Asunto(s)
Aluminio/toxicidad , Germinación/efectos de los fármacos , Oryza/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Germinación/fisiología , Oryza/fisiología , Estrés Fisiológico/fisiología
7.
Sci Rep ; 14(1): 7114, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531994

RESUMEN

The growth and productivity of maize are severely affected by soil salinity. The crucial determinants for the future performance of plants are productive for seed germination and seedling establishment; however, both stages are liable to soil salinity. For grain, maize is an economically significant crop sensitive to abiotic stresses. However, little is known about defense responses by the salinity-induced antioxidant and oxidative stress in maize. In our work, the commercially available maize variety Raka-Poshi was grown in pots for 30 days under greenhouse conditions. To evaluate the salt-induced oxidative/antioxidant responses in maize for salt stress 0, 25, 50, 75, 100 and 150 mM concentrations, treatments were provided using sodium chloride (NaCl). All the biochemical indices were calculated under all NaCl concentrations, while drought was induced by up to 50% irrigation water. After 30 days of seed germination, the maize leaves were collected for the measurement of lipid peroxidase or malondialdehyde (MDA), glutathione reductase (GR), guaiacol peroxidase (GPOD), hydrogen peroxide (H2O2), superoxide dismutase (SOD), lipoxygenase (LOX), catalase (CAT), ascorbate peroxidase (APOD) and glutathione-S-transferase (GST). The results revealed a 47% reduction under 150 mM NaCl and 50% drought stress conditions. The results have shown that the successive increase of NaCl concentrations and drought caused an increase in catalase production. With successive increase in NaCl concentration and drought stress, lower levels of H2O2, SOD, and MDA were detected in maize leaves. The results regarding the morphology of maize seedlings indicated a successive reduction in the root length and shoot length under applications of salt and drought stress, while root-to-shoot weights were found to be increased under drought stress and decreased under salt stress conditions During gene expression analysis collectively indicate that, under drought stress conditions, the expression levels of all nine mentioned enzyme-related genes were consistently downregulated.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Plantones , Superóxido Dismutasa/metabolismo , Suelo , Mecanismos de Defensa , Expresión Génica
8.
AMB Express ; 14(1): 11, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252222

RESUMEN

The brain-derived neurotrophic factor (BDNF) involves stress regulation and psychiatric disorders. The Val66Met polymorphism in the BDNF gene has been linked to altered protein function and susceptibility to stress-related conditions. This in silico analysis aimed to predict and analyze the consequences of the Val66Met mutation in the BDNF gene of stressed individuals. Computational techniques, including ab initio, comparative, and I-TASSER modeling, were used to evaluate the functional and stability effects of the Val66Met mutation in BDNF. The accuracy and reliability of the models were validated. Sequence alignment and secondary structure analysis compared amino acid residues and structural components. The phylogenetic analysis assessed the conservation of the mutation site. Functional and stability prediction analyses provided mixed results, suggesting potential effects on protein function and stability. Structural models revealed the importance of BDNF in key biological processes. Sequence alignment analysis showed the conservation of amino acid residues across species. Secondary structure analysis indicated minor differences between the wild-type and mutant forms. Phylogenetic analysis supported the evolutionary conservation of the mutation site. This computational study suggests that the Val66Met mutation in BDNF may have implications for protein stability, structural conformation, and function. Further experimental validation is needed to confirm these findings and elucidate the precise effects of this mutation on stress-related disorders.

9.
Sci Rep ; 14(1): 558, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177217

RESUMEN

Ethylene is a gaseous phytohormone involved in plants' growth and developmental processes, including seed germination, root initiation, fruit ripening, flower and leaf senescence, abscission, and stress responses. Ethylene biosynthesis (EB) gene analysis in response to nitrogen (N) and potassium (K) stress has not yet been conducted in Musa acuminata (banana) roots. The genome mining of banana (Musa acuminata L.) revealed 14 putative 1-aminocyclopropane-1-carboxylate synthase (ACS), 10 1-aminocyclopropane-1-carboxylate oxidase (ACO), and 3 Ethylene overproducer 1 (ETO1) genes. ACS, ACO, and ETO1 proteins possessed amino acid residues ranging from 422-684, 636-2670, and 893-969, respectively, with molecular weight (Mw) ranging from 4.93-7.55 kD, 10.1-8.3 kD and 10.1-10.78 kD. The number of introns present in ACS, ACO, and ETO1 gene sequences ranges from 0-14, 1-6, and 0-6, respectively. The cis-regulatory element analysis revealed the presence of light-responsive, abscisic acid, seed regulation, auxin-responsive, gibberellin element, endosperm-specific, anoxic inducibility, low-temperature responsiveness, salicylic acid responsiveness, meristem-specific and stress-responsive elements. Comprehensive phylogenetic analyses ACS, ACO, and ETO1 genes of Banana with Arabidopsis thaliana revealed several orthologs and paralogs assisting in understanding the putative functions of these genes. The expression profile of Musa acuminata genes in root under normal and low levels of nitrogen and potassium shows that MaACS14 and MaACO6 expressed highly at normal nitrogen supply. MaACS1 expression was significantly upregulated at low potassium levels, whereas, MaACO6 gene expression was significantly downregulated. The functional divergence and site-specific selective pressures on specific gene sequences of banana have been investigated. The bioinformatics-based genome-wide assessment of the family of banana attempted in the present study could be a significant step for deciphering novel ACS, ACO, and ETO1 genes based on genome-wide expression profiling.


Asunto(s)
Arabidopsis , Musa , Filogenia , Arabidopsis/metabolismo , Etilenos/metabolismo , Nutrientes , Nitrógeno/metabolismo , Potasio/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética
10.
Sci Rep ; 14(1): 8408, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600156

RESUMEN

The current study was conducted on the inhabitants living in the area adjacent to the Hudiara drain using bore water and vegetables adjacent to the Hudiara drain. Toxic heavy metals badly affect human health because of industrial environmental contamination. Particularly hundreds of millions of individuals globally have faced the consequences of consuming water and food tainted with pollutants. Concentrations of heavy metals in human blood were elevated in Hudiara drainings in Lahore city, Pakistan, due to highly polluted industrial effluents. The study determined the health effects of high levels of heavy metals (Cd, Cu, Zn, Fe, Pb, Ni, Hg, Cr) on residents of the Hudiara draining area, including serum MDA, 8-Isoprostane, 8-hydroxyguanosine, and creatinine levels. An absorption spectrophotometer was used to determine heavy metals in wate water, drinking water, soil, plants and human beings blood sampleas and ELISA kits were used to assess the level of 8-hydroxyguanosine, MDA, 8-Isoprostane in plasma serum creatinine level. Waste water samples, irrigation water samples, drinking water samples, Soil samples, Plants samples and blood specimens of adult of different weights and ages were collected from the polluted area of the Hudiara drain (Laloo and Mohanwal), and control samples were obtained from the unpolluted site Sheiikhpura, 60 km away from the site. Toxic heavy metals in blood damage the cell membrane and DNA structures, increasing the 8-hydroxyguanosine, MDA, creatinine, and 8-Isoprostane. Toxic metals contaminated bore water and vegetables, resulting in increased levels of creatinine, MDA, Isoprostane, and 8-hydroxy-2-guanosine in the blood of inhabitants from the adjacent area Hudiara drain compared to the control group. In addition,. This study also investigated heavy metal concentrations in meat and milk samples from buffaloes, cows, and goats. In meat, cow samples showed the highest Cd, Cu, Fe and Mn concentrations. In milk also, cows exhibited elevated Cu and Fe levels compared to goats. The results highlight species-specific variations in heavy metal accumulation, emphasizing the need for targeted monitoring to address potential health risks. The significant difference between the two groups i.e., the control group and the affected group, in all traits of the respondents (weight, age, heavy metal values MDA, 8-Isoprostane, 8-hydroxyguaniosine, and serum creatinine level). Pearson's correlation coefficient was calculated. The study has shown that the level of serum MDA, 8-Isoprostane, 8-hydroxyguaniosine, or creatinine has not significantly correlated with age, so it is independent of age. This study has proved that in Pakistan, the selected area of Lahore in the villages of Laloo and Mohanwal, excess of heavy metals in the human body damages the DNA and increases the level of 8-Isoprostane, MDA, creatinine, and 8-hydroxyguaniosine. As a result, National and international cooperation must take major steps to control exposure to heavy metals.


Asunto(s)
Agua Potable , Metales Pesados , Contaminantes del Suelo , Adulto , Humanos , Animales , Bovinos , Creatinina/análisis , Contaminantes del Suelo/metabolismo , Pakistán , Agua Potable/análisis , Cadmio/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Intoxicación por Metales Pesados , Suelo/química , Verduras/metabolismo , Daño del ADN , ADN , Cabras/metabolismo , Medición de Riesgo
11.
Sci Rep ; 14(1): 21813, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294226

RESUMEN

Rice (Oryza sativa) is a staple food for billions of people across the globe, that feeds nearly three-quarters of the human population on Earth, particularly in Asian countries. Rice yield has been drastically reduced and severely affected by various biotic and abiotic stresses, especially pathogens. Controlling the attack of such pathogens is a matter of immediate concern as yield losses in rice crops could deprive millions of lives of nourishment worldwide. Pyricularia oryzae is one such pathogen that has been considered the major disease of rice because of its worldwide geographic distribution. P. oryzae belongs to the kingdom fungi, that causes rice blast ultimately adversely affecting the yield of the rice crop. Keeping in view this alarming scenario, the present study was designed so that the identifications of genome-encoded miRNAs of Oryza sativa were employed to target and silence the genome of P. oryzae. This study accomplished the computational analysis of algorithms related to miRNA target prediction. Four computational target prediction algorithms i.e., psRNATarget, RNA22, miRanda, and RNAhybrid were utilized in this investigation. The consensus among target prediction algorithms was created to discover six miRNAs from the O. sativa genome with the conservation of the target site fully evaluated on the genome of P. oryzae. The discovery of these novel six miRNAs in Oryza sativa paved a strong way toward the control of this disease in rice. It will open doors for further research in the field of gene silencing in rice. These miRNAs can be designed and employed in the future as experimentation to create constructs regarding the silencing of P. oryzae in rice crops. In the future, this research would be surely helpful for the development of P. oryzae resistant rice varieties.


Asunto(s)
Ascomicetos , MicroARNs , Oryza , Enfermedades de las Plantas , Oryza/genética , Oryza/microbiología , MicroARNs/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ascomicetos/genética , Ascomicetos/patogenicidad , Genoma Fúngico , Genoma de Planta , Biología Computacional/métodos , Algoritmos
12.
Sci Rep ; 14(1): 18438, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117897

RESUMEN

Utilizing medicinal plants and other natural resources to prevent different types of human cancers is the prime focus of attention. Cervical cancer in women ranks as the fourth most common type of malignancy. The current study used gas chromatography-mass spectrometry (GC-MS) to identify the active phytochemical constituents from Caladium lindenii leaf extracts using ethanol (ECL) and n-hexane (HCL) solvents. Plant extracts were tested for potential cytotoxic effects on HeLa and HEK-293 T cells using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) and the crystal violet assays. SYBR Green-based real-time PCR was performed to assess the mRNA expression profile of the apoptosis biomarkers (BCL-2 and TP53). The molecular interaction of the compounds with the targeted proteins (TP53, BCL2, EGFR, and HER2) was determined using molecular docking. GC-MS analysis revealed a total of 93 compounds in both extracts. The ECL extract significantly reduced the proliferation of HeLa cervical cancer cells, with an IC50 value of 40 µg/mL, while HEK-293 T cells showed less effect (IC50 = 226 µg/mL). The quantitative RT-PCR gene expression analysis demonstrated the ethanol extract regulated TP53 and BCL2 mRNA expressions in treated cancer cell samples. Heptanediamide, N,N'-di-benzoyloxy-(- 10.1) is the best-docked ligand with a TP53 target found in the molecular docking study, whereas EGFR/Clionasterol had the second highest binding affinity (- 9.7), followed by EGFR/Cycloeucalenol (- 9.6). It is concluded that ECL extract has promising anti-cervical cancer potential and might be valued for developing new plant-derived anticancer agents after further investigations.


Asunto(s)
Apoptosis , Cromatografía de Gases y Espectrometría de Masas , Simulación del Acoplamiento Molecular , Extractos Vegetales , Neoplasias del Cuello Uterino , Humanos , Células HeLa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Células HEK293 , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
13.
AMB Express ; 14(1): 99, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249658

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) protein is an ion channel found in numerous epithelia and controls the flow of water and salt across the epithelium. The aim of our study to find natural compounds that can improve lung function for people with cystic fibrosis (CF) caused by the p.Gly628Arg (rs397508316) mutation of CFTR protein. The sequence of CFTR protein as a target structure was retrieved from UniProt and PDB database. The ligands that included Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and one Trikafta (R*) reference drug were screened out from PubChem database. Autodock vina software carried out docking, and binding energies between the drug and the target were included using docking-score. The following tools examined binding energy, interaction, stability, toxicity, and visualize protein-ligand complexes. The compounds having binding energies of -6.4, -5.1, -6.6, -5.1, and - 6.5 kcal/mol for Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and R*-drug, respectively with mutated CFTR (Gly628Arg) structure were chosen as the most promising ligands. The ligands bind to the mutated CFTR protein structure active sites in hydrophobic bonds, hydrogen bonds, and electrostatic interactions. According to ADMET analyses, the ligands Armepavine and Quercetin also displayed good pharmacokinetic and toxicity characteristics. An MD simulation for 200 ns was also established to ensure that Armepavine and Quercetin ligands attached to the target protein favorably and dynamically, and that protein-ligand complex stability was maintained. It is concluded that Armepavine and Quercetin have stronger capacity to inhibit the effect of mutated CFTR protein through improved trafficking and restoration of original function.

14.
BMC Genom Data ; 25(1): 26, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443818

RESUMEN

YABBY gene family is a plant-specific transcription factor with DNA binding domain involved in various functions i.e. regulation of style, length of flowers, and polarity development of lateral organs in flowering plants. Computational methods were utilized to identify members of the YABBY gene family, with Carrot (Daucus carota) 's genome as a foundational reference. The structure of genes, location of the chromosomes, protein motifs and phylogenetic investigation, syntony and transcriptomic analysis, and miRNA targets were analyzed to unmask the hidden structural and functional characteristics YABBY gene family in Carrots. In the following research, it has been concluded that 11 specific YABBY genes irregularly dispersed on all 9 chromosomes and proteins assembled into five subgroups i.e. AtINO, AtCRC, AtYAB5, AtAFO, and AtYAB2, which were created on the well-known classification of Arabidopsis. The wide ranges of YABBY genes in carrots were dispersed due to segmental duplication, which was detected as prevalent when equated to tandem duplication. Transcriptomic analysis showed that one of the DcYABBY genes was highly expressed during anthocyanin pigmentation in carrot taproots. The cis-regulatory elements (CREs) analysis unveiled elements that particularly respond to light, cell cycle regulation, drought induce ability, ABA hormone, seed, and meristem expression. Furthermore, a relative study among Carrot and Arabidopsis genes of the YABBY family indicated 5 sub-families sharing common characteristics. The comprehensive evaluation of YABBY genes in the genome provides a direction for the cloning and understanding of their functional properties in carrots. Our investigations revealed genome-wide distribution and role of YABBY genes in the carrots with best-fit comparison to Arabidopsis thaliana.


Asunto(s)
Arabidopsis , Daucus carota , Tephritidae , Animales , Daucus carota/genética , Arabidopsis/genética , Filogenia , Semillas
15.
AMB Express ; 13(1): 134, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015338

RESUMEN

Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin gene family gene that encodes proteins vital for the growth, maintenance, and survival of neurons in the nervous system. The study aimed to screen natural compounds against BDNF variant (V66M), which affects memory, cognition, and mood regulation. BDNF variant (V66M) as a target structure was selected, and Vitamin D, Curcumin, Vitamin C, and Quercetin as ligands structures were taken from PubChem database. Multiple tools like AUTODOCK VINA, BIOVIA discovery studio, PyMOL, CB-dock, IMOD server, Swiss ADEMT, and Swiss predict ligands target were used to analyze binding energy, interaction, stability, toxicity, and visualize BDNF-ligand complexes. Compounds Vitamin D3, Curcumin, Vitamin C, and Quercetin with binding energies values of - 5.5, - 6.1, - 4.5, and - 6.7 kj/mol, respectively, were selected. The ligands bind to the active sites of the BDNF variant (V66M) via hydrophobic bonds, hydrogen bonds, and electrostatic interactions. Furthermore, ADMET analysis of the ligands revealed they exhibited sound pharmacokinetic and toxicity profiles. In addition, an MD simulation study showed that the most active ligand bound favorably and dynamically to the target protein, and protein-ligand complex stability was determined. The finding of this research could provide an excellent platform for discovering and rationalizing novel drugs against stress related to BDNF (V66M). Docking, preclinical drug testing and MD simulation results suggest Quercetin as a more potent BDNF variant (V66M) inhibitor and forming a more structurally stable complex.

16.
Rice (N Y) ; 16(1): 39, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688677

RESUMEN

Climate change has significantly affected agriculture production, particularly the rice crop that is consumed by almost half of the world's population and contributes significantly to global food security. Rice is vulnerable to several abiotic and biotic stresses such as drought, heat, salinity, heavy metals, rice blast, and bacterial blight that cause huge yield losses in rice, thus threatening food security worldwide. In this regard, several plant breeding and biotechnological techniques have been used to raise such rice varieties that could tackle climate changes. Nowadays, gene editing (GE) technology has revolutionized crop improvement. Among GE technology, CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) system has emerged as one of the most convenient, robust, cost-effective, and less labor-intensive system due to which it has got more popularity among plant researchers, especially rice breeders and geneticists. Since 2013 (the year of first application of CRISPR/Cas-based GE system in rice), several trait-specific climate-resilient rice lines have been developed using CRISPR/Cas-based GE tools. Earlier, several reports have been published confirming the successful application of GE tools for rice improvement. However, this review particularly aims to provide an updated and well-synthesized brief discussion based on the recent studies (from 2020 to present) on the applications of GE tools, particularly CRISPR-based systems for developing CRISPR rice to tackle the current alarming situation of climate change, worldwide. Moreover, potential limitations and technical bottlenecks in the development of CRISPR rice, and prospects are also discussed.

17.
Sci Rep ; 13(1): 8139, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208408

RESUMEN

Mutations, the genetic variations in genomic sequences, play an important role in molecular biology and biotechnology. During DNA replication or meiosis, one of the mutations is transposons or jumping genes. An indigenous transposon nDart1-0 was successfully introduced into local indica cultivar Basmati-370 from transposon-tagged line viz., GR-7895 (japonica genotype) through conventional breeding technique, successive backcrossing. Plants from segregating populationsshowed variegated phenotypes were tagged as BM-37 mutants. Blast analysis of the sequence data revealed that the GTP-binding protein, located on the BAC clone OJ1781_H11 of chromosome 5, contained an insertion of DNA transposon nDart1-0. The nDart1-0 has "A" at position 254 bp, whereas nDart1 homologs have "G", which efficiently distinguishes nDart1-0 from its homologs. The histological analysis revealed that the chloroplast of mesophyll cells in BM-37 was disrupted with reduction in size of starch granules and higher number of osmophillic plastoglobuli, which resulted in decreased chlorophyll contents and carotenoids, gas exchange parameters (Pn, g, E, Ci), and reduced expression level of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development. Along with the rise of GTP protein, the salicylic acid (SA) and gibberellic acid (GA) and antioxidant contents(SOD) and MDA levels significantly enhanced, while, the cytokinins (CK), ascorbate peroxidase (APX), catalase (CAT), total flavanoid contents (TFC) and total phenolic contents (TPC) significantly reduced in BM-37 mutant plants as compared with WT plants. These results support the notion that GTP-binding proteins influence the process underlying chloroplast formation. Therefore, it is anticipated that to combat biotic or abiotic stress conditions, the nDart1-0 tagged mutant (BM-37) of Basmati-370 would be beneficial.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Elementos Transponibles de ADN/genética , Genes de Plantas , Antioxidantes , Clorofila
18.
Genes (Basel) ; 14(5)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37239449

RESUMEN

Rice (Oryza sativa L.) is a staple food for more than 50% of the world's population. Rice cultivar improvement is critical in order to feed the world's growing population. Improving yield is one of the main aims of rice breeders. However, yield is a complex quantitative trait controlled by many genes. The presence of genetic diversity is the key factor to improve the yield hence, the presence of diversity in any germplasm is important for yield improvement. In the current study, the rice germplasm was collected from Pakistan and the United States of America and a panel of 100 diverse genotypes was utilized to identify important yield and yield-related traits. For this, a genome-wide association study (GWAS) was performed to identify the genetic loci related to yield. The GWAS on the diverse germplasm will lead to the identification of new genes which can be utilized in the breeding program for improvement of yield. For this reason, firstly, the germplasm was phenotypically evaluated in two growing seasons for yield and yield-related traits. The analysis of variance results showed significant differences among traits which showed the presence of diversity in the current germplasm. Secondly, the germplasm was also genotypically evaluated using 10K SNP. Genetic structure analysis showed the presence of four groups which showed that enough genetic diversity was present in the rice germplasm to be used for association mapping analysis. The results of GWAS identified 201 significant marker trait associations (MTAs. 16 MTAs were identified for plant height, 49 for days to flowering, three for days to maturity, four for tillers per plant, four for panicle length, eight for grains per panicle, 20 unfilled grains per panicle, 81 for seed setting %, four for thousand-grain weight, five for yield per plot and seven for yield per hectare. Apart from this, some pleiotropic loci were also identified. The results showed that panicle length (PL) and thousand-grain weight (TGW) were controlled by a pleiotropic locus OsGRb23906 on chromosome 1 at 10,116,371 cM. The loci OsGRb25803 and OsGRb15974 on chromosomes 4 and 8 at the position of 14,321,111 cM and 6,205,816 cM respectively, showed pleiotropic effects for seed setting % (SS) and unfilled grain per panicle (UG/P). A locus OsGRb09180 on chromosome 4 at 19,850,601 cM was significantly linked with SS and yield/ha. Furthermore, gene annotation was performed, and results indicated that the 190 candidate genes or QTLs that closely linked with studied traits. These candidate genes and novel significant markers could be useful in marker-assisted gene selection and QTL pyramiding to improve rice yield and the selection of potential parents, recombinants and MTAs which could be used in rice breeding programs to develop high-yielding rice varieties for sustainable food security.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Estados Unidos , Oryza/genética , Polimorfismo de Nucleótido Simple/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Grano Comestible/genética
19.
Genes (Basel) ; 14(4)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37107580

RESUMEN

YABBY is among the specific transcription factor (TF) gene family in plants and plays an important role in the development of the leaves and floral organs. Its specific roles include lateral organ development, the establishment of dorsoventral polarity, and response to abiotic stress. Potato is an important crop worldwide and YABBY genes are not still identified and characterized in potato. So, little has been known about YABBY genes in potato until now. This study was carried out to perform genome-wide analysis, which will provide an in-depth analysis about the role of YABBY genes in potato. There have been seven StYAB genes identified, which are found to be located on seven different chromosomes. Through multiple sequence analyses, it has been predicted that the YABBY domain was present in all seven genes while the C2-C2 domain was found to be absent only in StYAB2. With the help of cis-element analysis, the involvement of StYAB genes in light, stress developmental, and hormonal responsiveness has been found. Furthermore, expression analysis from RNA-seq data of different potato organs indicated that all StYAB genes have a role in the vegetative growth of the potato plant. In addition to this, RNA-seq data also identified StYAB3, StYAB5, and StYAB7 genes showing expression during cadmium, and drought stress, while StYAB6 was highly expressed during a viral attack. Moreover, during the attack of Phytophthora infestans on a potato plant StYAB3, StYAB5, StYAB6, and StYAB7 showed high expression. This study provides significant knowledge about the StYAB gene structures and functions, which can later be used for gene cloning, and functional analysis; this information may be utilized by molecular biologists and plant breeders for the development of new potato lines.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Genoma de Planta , Genes de Plantas , Estrés Fisiológico/genética , RNA-Seq
20.
Sci Rep ; 12(1): 19252, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357474

RESUMEN

A number of studies have reported frequent incidence of c-kit gene mutations in association with core binding factor acute myeloid leukemia (CBF-AML). These genetic changes have become important prognostic predictors in patients with abnormal karyotype. Aim of this study was the detection of nucleotide alterations in newly diagnosed acute myeloid leukemia patients for three exons of c-kit gene, including cytogenetically normal patients. Thirty-one de novo AML patients were screened for any possible variations in exon 8, 11 and 17 sequences of c-kit proto-oncogene leading to amino acid substitutions or frame shift. Sanger sequencing method was employed followed by sequence analysis. Mutation data was then correlated with clinical and hematological parameters of patients and prognostic significance of genetic changes was assessed as well. The computational tools were then used to further understand the extent of damage caused by these mutations to c-kit protein. Fifteen (48.4%) mutant patients were observed with single, double or multiple mutations in one, two or all three exons studied. The analysis revealed eight new alterations which were not reported previously. Significant variation among mutant and non-mutant group of patients was observed with respect to FAB subtypes (x2 = 12.524, p = 0.029), Spleen size (x2 = 4.288, p = 0.038) and Red blood cell count (x2 = 8.447, p = 0.007). The survival analysis indicates poor overall and event free survival outcomes in mutant individuals. Furthermore, the in silico analysis suggests that changes in nucleotide sequences can possibly damage the protein structure and effect it's function. This study emphasizes the need to consider screening of c-kit gene alterations not only in CBF-AML but in cytogenetically normal AML patients as well. In current investigation the effect of mutation Arg420Gly on structure and function of c-kit protein was investigated, as this was the most observed substitution in present cohort. Various bioinformatics tools and techniques were employed, which determined that Arg420Gly is possibly non-pathogenic mutation.


Asunto(s)
Factores de Unión al Sitio Principal , Leucemia Mieloide Aguda , Humanos , Factores de Unión al Sitio Principal/genética , Proteínas Proto-Oncogénicas c-kit/genética , Exones , Mutación , Pronóstico , Proto-Oncogenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA