Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561465

RESUMEN

INTRODUCTION: A microdeletion including the SNORD116 gene (SNORD116 MD) has been shown to drive the Prader-Willi syndrome (PWS) features. PWS is a neurodevelopmental disorder clinically characterized by endocrine impairment, intellectual disability and psychiatric symptoms such as a lack of emotional regulation, impulsivity, and intense temper tantrums with outbursts. In addition, this syndrome is associated with a nutritional trajectory characterized by addiction-like behavior around food in adulthood. PWS is related to the genetic loss of expression of a minimal region that plays a potential role in epigenetic regulation. Nevertheless, the role of the SNORD116 MD in DNA methylation, as well as the impact of the oxytocin (OXT) on it, have never been investigated in human neurons. METHODS: We studied the methylation marks in induced pluripotent stem-derived dopaminergic neurons carrying a SNORD116 MD in comparison with those from an age-matched adult healthy control. We also performed identical neuron differentiation in the presence of OXT. We performed a genome-wide DNA methylation analysis from the iPSC-derived dopaminergic neurons by reduced-representation bisulfite sequencing. In addition, we performed RNA sequencing analysis in these iPSC-derived dopaminergic neurons differentiated with or without OXT. RESULTS: The analysis revealed that 153,826 cytosines were differentially methylated between SNORD116 MD neurons and control neurons. Among the differentially methylated genes, we determined a list of genes also differentially expressed. Enrichment analysis of this list encompassed the dopaminergic system with COMT and SLC6A3. COMT displayed hypermethylation and under-expression in SNORD116 MD, and SLC6A3 displayed hypomethylation and over-expression in SNORD116 MD. RT-qPCR confirmed significant over-expression of SLC6A3 in SNORD116 MD neurons. Moreover, the expression of this gene was significantly decreased in the case of OXT adjunction during the differentiation. CONCLUSION: SNORD116 MD dopaminergic neurons displayed differential methylation and expression in the COMT and SLC6A3 genes, which are related to dopaminergic clearance.

2.
Neuroendocrinology ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38574475

RESUMEN

Introduction Exposure to social trauma may alter engagement with both fear-related and unrelated social stimuli long after. Intriguingly, how simultaneous discrimination of social fear and safety is affected in neurodevelopmental conditions remains underexplored. The role of the neuropeptide oxytocin is established in social behaviors, and yet unexplored during such a challenge post-social trauma. Methods Using Magel2 knockout mice, an animal model of Prader Willi Syndrome (PWS) and Schaaf-Yang Syndrome (SYS), we tested memory of social fear and safety after a modified social fear conditioning task. Additionally, we tracked the activity of oxytocin neurons in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus by fibre photometry, as animals were simultaneously presented with a choice between a fear and safe social cue during recall. Results Male Magel2 KO mice trained to fear females with electrical footshocks avoided both unfamiliar females and males during recalls, lasting even a week post-conditioning. On the contrary, trained Magel2 WT avoided only females during recalls, lasting days rather than a week post-conditioning. Inability to overcome social fear and avoidance of social safety in Magel2 KO mice were associated with reduced engagement of oxytocin neurons in the SON, but not the PVN. Conclusion In a preclinical model of PWS/SYS, we demonstrated region-specific deficit in oxytocin neuron activity associated with behavioral generalization of social fear to social safety. Insights from this study add to our understanding of oxytocin action in the brain at the intersection of social trauma and PWS/SYS.

3.
J Neuroinflammation ; 19(1): 234, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153535

RESUMEN

BACKGROUND: Research in recent years firmly established that microglial cells play an important role in the pathogenesis of Alzheimer's disease (AD). In parallel, a series of studies showed that, under both homeostatic and pathological conditions, microglia are a heterogeneous cell population. In AD, amyloid-ß (Aß) plaque-associated microglia (PAM) display a clearly distinct phenotype compared to plaque-distant microglia (PCM), suggesting that these two microglia subtypes likely differently contribute to disease progression. So far, molecular characterization of PAM was performed indirectly using single cell RNA sequencing (scRNA-seq) approaches or based on markers that are supposedly up-regulated in this microglia subpopulation. METHODS: In this study based on a well-characterized AD mouse model, we combined cell-specific laser capture microdissection and RNA-seq analysis to i) identify, without preconceived notions of the molecular and/or functional changes that would affect these cells, the genes and gene networks that are dysregulated in PAM or PCM at three critical stages of the disease, and ii) to investigate the potential contribution of both plaque-associated and plaque-distant microglia. RESULTS: First, we established that our approach allows selective isolation of microglia, while preserving spatial information and preventing transcriptome changes induced by classical purification approaches. Then, we identified, in PAM and PCM subpopulations, networks of co-deregulated genes and analyzed their potential functional roles in AD. Finally, we investigated the dynamics of microglia transcriptomic remodeling at early, intermediate and late stages of the disease and validated select findings in postmortem human AD brain. CONCLUSIONS: Our comprehensive study provides useful transcriptomic information regarding the respective contribution of PAM and PCM across the Aß pathology progression. It highlights specific pathways that would require further study to decipher their roles across disease progression. It demonstrates that the proximity of microglia to Aß-plaques dramatically alters the microglial transcriptome and reveals that these changes can have both positive and negative impacts on the surrounding cells. These opposing effects may be driven by local microglia heterogeneity also demonstrated by this study. Our approach leads to molecularly define the less well studied plaque-distant microglia. We show that plaque-distant microglia are not bystanders of the disease, although the transcriptomic changes are far less striking compared to what is observed in plaque-associated microglia. In particular, our results suggest they may be involved in Aß oligomer detection and in Aß-plaque initiation, with increased contribution as the disease progresses.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/patología , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 116(26): 13097-13106, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31182610

RESUMEN

Stress can either promote or impair learning and memory. Such opposing effects depend on whether synapses persist or decay after learning. Maintenance of new synapses formed at the time of learning upon neuronal network activation depends on the stress hormone-activated glucocorticoid receptor (GR) and neurotrophic factor release. Whether and how concurrent GR and neurotrophin signaling integrate to modulate synaptic plasticity and learning is not fully understood. Here, we show that deletion of the neurotrophin brain-derived neurotrophic factor (BDNF)-dependent GR-phosphorylation (PO4) sites impairs long-term memory retention and maintenance of newly formed postsynaptic dendritic spines in the mouse cortex after motor skills training. Chronic stress and the BDNF polymorphism Val66Met disrupt the BDNF-dependent GR-PO4 pathway necessary for preserving training-induced spines and previously acquired memories. Conversely, enrichment living promotes spine formation but fails to salvage training-related spines in mice lacking BDNF-dependent GR-PO4 sites, suggesting it is essential for spine consolidation and memory retention. Mechanistically, spine maturation and persistence in the motor cortex depend on synaptic mobilization of the glutamate receptor subunit A1 (GluA1) mediated by GR-PO4 Together, these findings indicate that regulation of GR-PO4 via activity-dependent BDNF signaling is important for the formation and maintenance of learning-dependent synapses. They also define a signaling mechanism underlying these effects.


Asunto(s)
Consolidación de la Memoria/fisiología , Corteza Motora/fisiopatología , Plasticidad Neuronal/fisiología , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Glucocorticoides/metabolismo , Homeostasis/fisiología , Humanos , Microscopía Intravital , Masculino , Ratones , Corteza Motora/diagnóstico por imagen , Fosforilación/fisiología , Polimorfismo de Nucleótido Simple , Receptores AMPA/metabolismo , Receptores de Glucocorticoides/genética , Transducción de Señal/fisiología , Sinapsis/metabolismo
5.
Eur J Neurosci ; 54(11): 8029-8051, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34766390

RESUMEN

Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.


Asunto(s)
Trastornos por Estrés Postraumático , Animales , Factor Neurotrófico Derivado del Encéfalo , Glucocorticoides/uso terapéutico , Trastornos por Estrés Postraumático/tratamiento farmacológico
6.
Stress ; 24(2): 130-153, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32755268

RESUMEN

The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.


Asunto(s)
Receptores de Glucocorticoides , Estrés Psicológico , Teorema de Bayes , Encéfalo/metabolismo , Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
J Neurosci ; 38(6): 1335-1350, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29295823

RESUMEN

The energetic costs of behavioral chronic stress are unlikely to be sustainable without neuronal plasticity. Mitochondria have the capacity to handle synaptic activity up to a limit before energetic depletion occurs. Protective mechanisms driven by the induction of neuronal genes likely evolved to buffer the consequences of chronic stress on excitatory neurons in prefrontal cortex (PFC), as this circuitry is vulnerable to excitotoxic insults. Little is known about the genes involved in mitochondrial adaptation to the buildup of chronic stress. Using combinations of genetic manipulations and stress for analyzing structural, transcriptional, mitochondrial, and behavioral outcomes, we characterized NR4A1 as a stress-inducible modifier of mitochondrial energetic competence and dendritic spine number in PFC. NR4A1 acted as a transcription factor for changing the expression of target genes previously involved in mitochondrial uncoupling, AMP-activated protein kinase activation, and synaptic growth. Maintenance of NR4A1 activity by chronic stress played a critical role in the regressive synaptic organization in PFC of mouse models of stress (male only). Knockdown, dominant-negative approach, and knockout of Nr4a1 in mice and rats (male only) protected pyramidal neurons against the adverse effects of chronic stress. In human PFC tissues of men and women, high levels of the transcriptionally active NR4A1 correlated with measures of synaptic loss and cognitive impairment. In the context of chronic stress, prolonged expression and activity of NR4A1 may lead to responses of mitochondria and synaptic connectivity that do not match environmental demand, resulting in circuit malfunction between PFC and other brain regions, constituting a pathological feature across disorders.SIGNIFICANCE STATEMENT The bioenergetic cost of chronic stress is too high to be sustainable by pyramidal prefrontal neurons. Cellular checkpoints have evolved to adjust the responses of mitochondria and synapses to the buildup of chronic stress. NR4A1 plays such a role by controlling the energetic competence of mitochondria with respect to synapse number. As an immediate-early gene, Nr4a1 promotes neuronal plasticity, but sustained expression or activity can be detrimental. NR4A1 expression and activity is sustained by chronic stress in animal models and in human studies of neuropathologies sensitive to the buildup of chronic stress. Therefore, antagonism of NR4A1 is a promising avenue for preventing the regressive synaptic reorganization in cortical systems in the context of chronic stress.


Asunto(s)
Mitocondrias/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Corteza Prefrontal/fisiopatología , Estrés Psicológico/fisiopatología , Sinapsis/metabolismo , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Recuento de Células , Enfermedad Crónica , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/psicología , Espinas Dendríticas , Femenino , Regulación de la Expresión Génica/genética , Suspensión Trasera , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/genética , Corteza Prefrontal/citología , Células Piramidales/fisiología , Ratas , Estrés Psicológico/psicología
8.
Hippocampus ; 29(5): 422-439, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-28888073

RESUMEN

Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Hipocampo/patología , Factores de Crecimiento Nervioso/metabolismo , Células Piramidales/patología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Disfunción Cognitiva/metabolismo , Progresión de la Enfermedad , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Células Piramidales/metabolismo
9.
Neuroendocrinology ; 109(3): 277-284, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30572337

RESUMEN

Behavioral choices made by the brain during stress depend on glucocorticoid and brain-derived neurotrophic factor (BDNF) signaling pathways acting in synchrony in the mesolimbic (reward) and corticolimbic (emotion) neural networks. Deregulated expression of BDNF and glucocorticoid receptors in brain valuation areas may compromise the integration of signals. Glucocorticoid receptor phosphorylation upon BDNF signaling in neurons represents one mechanism underlying the integration of BDNF and glucocorticoid signals that when off balance may lay the foundation of maladaptations to stress. Here, we propose that BDNF signaling conditions glucocorticoid responses impacting neural plasticity in the mesocorticolimbic system. This provides a novel molecular framework for understanding how brain networks use BDNF and glucocorticoid signaling contingencies to forge receptive neuronal fields in temporal domains defined by behavioral experience, and in mood disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Glucocorticoides/metabolismo , Animales , Humanos , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 112(51): 15737-42, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26630005

RESUMEN

Neurotrophins and glucocorticoids are robust synaptic modifiers, and deregulation of their activities is a risk factor for developing stress-related disorders. Low levels of brain-derived neurotrophic factor (BDNF) increase the desensitization of glucocorticoid receptors (GR) and vulnerability to stress, whereas higher levels of BDNF facilitate GR-mediated signaling and the response to antidepressants. However, the molecular mechanism underlying neurotrophic-priming of GR function is poorly understood. Here we provide evidence that activation of a TrkB-MAPK pathway, when paired with the deactivation of a GR-protein phosphatase 5 pathway, resulted in sustained GR phosphorylation at BDNF-sensitive sites that is essential for the transcription of neuronal plasticity genes. Genetic strategies that disrupted GR phosphorylation or TrkB signaling in vivo impaired the neuroplasticity to chronic stress and the effects of the antidepressant fluoxetine. Our findings reveal that the coordinated actions of BDNF and glucocorticoids promote neuronal plasticity and that disruption in either pathway could set the stage for the development of stress-induced psychiatric diseases.


Asunto(s)
Antidepresivos/farmacología , Plasticidad Neuronal/fisiología , Receptores de Glucocorticoides/fisiología , Transducción de Señal/fisiología , Estrés Psicológico/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/fisiología , Femenino , Fluoxetina/farmacología , Sistema de Señalización de MAP Quinasas , Glicoproteínas de Membrana/fisiología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Fosforilación , Proteínas Tirosina Quinasas/fisiología , Ratas , Ratas Sprague-Dawley , Receptor trkB
11.
Neurobiol Dis ; 88: 107-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26774030

RESUMEN

Clinical and experimental evidence point to a possible role of cerebrovascular dysfunction in Alzheimer's disease (AD). The 5xFAD mouse model of AD expresses human amyloid precursor protein and presenilin genes with mutations found in AD patients. It remains unknown whether amyloid deposition driven by these mutations is associated with cerebrovascular changes. 5xFAD and wild type mice (2 to 12months old; M2 to M12) were used. Thinned skull in vivo 2-photon microscopy was used to determine Aß accumulation on leptomeningeal or superficial cortical vessels over time. Parenchymal microvascular damage was assessed using FITC-microangiography. Collagen-IV and CD31 were used to stain basal lamina and endothelial cells. Methoxy-XO4, Thioflavin-S or 6E10 were used to visualize Aß accumulation in living mice or in fixed brain tissues. Positioning of reactive IBA1 microglia and GFAP astrocytes at the vasculature was rendered using confocal microscopy. Platelet-derived growth factor receptor beta (PDGFRß) staining was used to visualize perivascular pericytes. In vivo 2-photon microscopy revealed Methoxy-XO4(+) amyloid perivascular deposits on leptomeningeal and penetrating cortical vessels in 5xFAD mice, typical of cerebral amyloid angiopathy (CAA). Amyloid deposits were visible in vivo at M3 and aggravated over time. Progressive microvascular damage was concomitant to parenchymal Aß plaque accumulation in 5xFAD mice. Microvascular inflammation in 5xFAD mice presented with sporadic FITC-albumin leakages at M4 becoming more prevalent at M9 and M12. 3D colocalization showed inflammatory IBA1(+) microglia proximal to microvascular FITC-albumin leaks. The number of perivascular PDGFRß(+) pericytes was significantly decreased at M4 in the fronto-parietal cortices, with a trend decrease observed in the other structures. At M9-M12, PDGFRß(+) pericytes displayed hypertrophic perivascular ramifications contiguous to reactive microglia. Cerebral amyloid angiopathy and microvascular inflammation occur in 5xFAD mice concomitantly to parenchymal plaque deposition. The prospect of cerebrovascular pharmacology in AD is discussed.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Vasos Sanguíneos/patología , Circulación Cerebrovascular/genética , Factores de Edad , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Mutación/genética , Pericitos/metabolismo , Pericitos/patología , Placa Amiloide/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Presenilina-1/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
12.
Pharmacol Res ; 113(Pt A): 1-17, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27498156

RESUMEN

Glucocorticoid actions are tailored to the organs and cells responding thanks to complex integration with ongoing signaling mediated by cytokines, hormones, neurotransmitters, and growth factors. Disruption of: (1) the amount of signaling molecules available locally; (2) the timing with other signaling pathways; (3) the post-translational modifications on glucocorticoid receptors; and (4) the receptors-interacting proteins within cellular organelles and functional compartments, can modify the sensitivity and efficacy of glucocorticoid responses with implications in physiology, diseases and treatments. Tissue sensitivity to glucocorticoids is sustained by multiple systems that do not operate in isolation. We take the example of the interplay between the glucocorticoid and brain-derived neurotrophic factor signaling pathways to deconstruct context-dependent glucocorticoid responses that play key roles in physiology, diseases and therapies.


Asunto(s)
Citocinas/metabolismo , Glucocorticoides/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neurotransmisores/metabolismo , Transducción de Señal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Procesamiento Proteico-Postraduccional/fisiología , Receptores de Glucocorticoides/metabolismo
13.
Neural Plast ; 2016: 3985063, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26885402

RESUMEN

The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic "inverted U shape" response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.


Asunto(s)
Trastornos Mentales/metabolismo , Estrés Psicológico/metabolismo , Encéfalo/metabolismo , Humanos , Mitocondrias , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Sinapsis/metabolismo
14.
Adv Exp Med Biol ; 872: 33-57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26215989

RESUMEN

Well-defined as signaling hormones for the programming of cell type-specific and context-dependent gene expression signatures, glucocorticoids control experience-driven allostasis. One unifying model is that glucocorticoids help maintaining the integrity and plasticity of cellular networks in changing environments through the mobilization of cellular energy stores, profiling of gene expression, and changes in the electrical and morphological properties of cells. The nucleus is their primary site of action, yet recent discoveries point to additional gene transcription-independent functions at the plasma membrane of neuronal synapses. Glucocorticoids are secreted factors that reflect intrinsically the changes coming from the external world, temporally and regionally, during development and adulthood. In this review, we will enumerate the properties and signaling attributes of glucocorticoids and their receptors that characterize them as allostatic modulators. The molecular mechanisms used to support their role at the synapse will be highlighted.


Asunto(s)
Glucocorticoides/metabolismo , Transducción de Señal , Regulación Alostérica , Animales , Disponibilidad Biológica , Humanos , Fosforilación , Receptores de Glucocorticoides/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(4): 1305-10, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22232675

RESUMEN

Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Glucocorticoides/metabolismo , Homeostasis/fisiología , Hipotálamo/fisiología , Receptores de Glucocorticoides/metabolismo , Transactivadores/metabolismo , Análisis de Varianza , Animales , Inmunoprecipitación de Cromatina , Sistema Hipotálamo-Hipofisario/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción
16.
Med Sci (Paris) ; 31(4): 383-8, 2015 Apr.
Artículo en Francés | MEDLINE | ID: mdl-25958756

RESUMEN

If the engram of long-term memory is encoded by structural changes of neuronal circuits, they are expected to be present at distant time points after learning, to be specific of circuits activated by learning, and sensitive to behavioral contingencies. In this review we present new concepts that emerged from in vivo imaging studies that tracked the structural bases of the memory trace. A fine balance of spine formation and spine elimination needed for behavioral adaptation to new experience is regulated by glucocorticoids, which are secreted in synchrony with circadian rhythms and in response to stress. Disruption of glucocorticoid oscillations frequently observed in psychiatric disorders like depression and post-traumatic stress produces spine turnover defects and learning disabilities. These new findings provide a new framework for explaining the potent but complex mnemonic effects of glucocorticoids.


Asunto(s)
Glucocorticoides/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Animales , Células Dendríticas/efectos de los fármacos , Células Dendríticas/fisiología , Humanos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Memoria a Largo Plazo/fisiología , Plasticidad Neuronal/efectos de los fármacos
17.
Biol Psychiatry ; 95(8): 785-799, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38952926

RESUMEN

Background: Responding to social signals by expressing the correct behavior is not only challenged in autism, but also in diseases with high prevalence of autism, like Prader-Willi Syndrome (PWS). Clinical evidence suggests aberrant pro-social behavior in patients can be regulated by intranasal oxytocin (OXT) or vasopressin (AVP). However, what neuronal mechanisms underlie impaired behavioral responses in a socially-aversive context, and how can they be corrected, remains largely unknown. Methods: Using the Magel2 knocked-out (KO) mouse model of PWS (crossed with CRE-dependent transgenic lines), we devised optogenetic, physiological and pharmacological strategies in a social-fear-conditioning paradigm. Pathway specific roles of OXT and AVP signaling were investigated converging on the lateral septum (LS), a region which receives dense hypothalamic inputs. Results: OXT and AVP signaling promoted inhibitory synaptic transmission in the LS, which failure in Magel2KO mice disinhibited somatostatin (SST) neurons and disrupted social-fear extinction. The source of OXT and AVP deficits mapped specifically in the supraoptic nucleus→LS pathway of Magel2KO mice disrupting social-fear extinction, which could be corrected by optogenetic or pharmacological inhibition of SST-neurons in the LS. Interestingly, LS SST-neurons also gated the expression of aggressive behavior, possibly as part of functional units operating beyond local septal circuits. Conclusions: SST cells in the LS play a crucial role in integration and expression of disrupted neuropeptide signals in autism, thereby altering the balance in expression of safety versus fear. Our results uncover novel mechanisms underlying dysfunction in a socially-aversive context, and provides a new framework for future treatments in autism-spectrum disorders.


Asunto(s)
Modelos Animales de Enfermedad , Extinción Psicológica , Miedo , Ratones Noqueados , Neuronas , Oxitocina , Síndrome de Prader-Willi , Somatostatina , Vasopresinas , Animales , Oxitocina/farmacología , Somatostatina/farmacología , Somatostatina/metabolismo , Miedo/efectos de los fármacos , Miedo/fisiología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratones , Síndrome de Prader-Willi/fisiopatología , Síndrome de Prader-Willi/tratamiento farmacológico , Vasopresinas/metabolismo , Agresión/efectos de los fármacos , Agresión/fisiología , Masculino , Conducta Social , Núcleos Septales/efectos de los fármacos , Núcleos Septales/metabolismo , Optogenética , Ratones Endogámicos C57BL , Péptidos y Proteínas de Señalización Intracelular , Proteínas Intrínsecamente Desordenadas
18.
J Neuroendocrinol ; 35(9): e13235, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36775895

RESUMEN

The exact neuropathological mechanism by which the dementia process unfolds is under intense scrutiny. The disease affects about 38 million people worldwide, 70% of which are clinically diagnosed with Alzheimer's disease (AD). If the destruction of synapses essential for learning, planning and decision-making is part of the problem, must the restoration of previously lost synapses be part of the solution? It is plausible that neuronal capacity to restitute information corresponds with the adaptive capacity of its connectivity reserve. A challenge will be to promote the functional connectivity that can compensate for the lost one. This will require better clarification of the remodeling of functional connectivity during the progression of AD dementia and its reversal upon experimental treatment. A major difficulty is to promote the neural pathways that are atrophied in AD dementia while suppressing others that are bolstered. Therapeutic strategies should aim at scaling functional connectivity to a just balance between the atrophic and hypertrophic systems. However, the exact factors that can help reach this objective are still unclear. Similarities between the effects of chronic stress and some neuropathological mechanisms underlying AD dementia support the idea that common components deserve prime attention as therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Aprendizaje , Sinapsis/metabolismo , Neuronas/patología , Vías Nerviosas
19.
Steroids ; 199: 109294, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549777

RESUMEN

Glucocorticoids are stress hormones that play central roles in the immediate and slower adaptive responses of the brain and body to new behavioral experience. The exact mechanisms by which the rapid and slow processes underlying glucocorticoid mnemonic effects unfold are under intensive scrutiny. It is possible that glucocorticoids rapidly modify memory representations in the brain by interfering with synaptic functions between inhibitory and excitatory neurons in a timing and context dependent manner. In particular, activity-dependent trans-synaptic messengers appear to have all the necessary attributes to engage in the rapid signaling by glucocorticoids and regulate the brain and behaviors. Novel frameworks for the treatment of stress-related disorders could emerge from a better characterization of the dynamic interplay between the rapid and slow signaling components by glucocorticoids on large-scale brain networks. Here I present some of the exact factors that could help reach this objective.


Asunto(s)
Glucocorticoides , Transducción de Señal , Glucocorticoides/farmacología , Neuronas , Encéfalo
20.
J Neuroendocrinol ; 35(2): e13203, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36221223

RESUMEN

Dissociation between the healthy and toxic effects of cortisol, a major stress-responding hormone has been a widely used strategy to develop anti-inflammatory glucocorticoids with fewer side effects. Such strategy falls short when treating brain disorders as timing and activity state within large-scale neuronal networks determine the physiological and behavioral specificity of cortisol response. Advances in structural molecular dynamics posit the bases for engineering glucocorticoids with precision bias for select downstream signaling pathways. Design of allosteric and/or cooperative control for the glucocorticoid receptor could help promote the beneficial and reduce the deleterious effects of cortisol on brain and behavior in disease conditions.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Antiinflamatorios/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA