RESUMEN
The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.
Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Receptores Androgénicos/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Mutación , Oligopéptidos/química , Oligopéptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Androgénicos/química , Receptores Androgénicos/genética , Secuencias Repetitivas de Aminoácido , Factores de Transcripción/genética , Activación TranscripcionalRESUMEN
Hormone-dependent aggregation of the androgen receptor (AR) with a polyglutamine (polyQ) stretch amplification (>38) is considered to be the causative agent of the neurodegenerative disorder spinal and bulbar muscular atrophy (SBMA), consistent with related neurodegenerative diseases involving polyQ-extended proteins. In spite of the widespread acceptance of this common causal hypothesis, little attention has been paid to its apparent incompatibility with the observation of AR aggregation in healthy individuals with no polyQ stretch amplification. Here we used atomic force microscopy (AFM) to characterize sub-micrometer scale aggregates of the wild-type (22 glutamines) and the SBMA form (65 glutamines), as well as a polyQ deletion mutant (1 glutamine) and a variant with a normal length polyQ stretch but with a serine to alanine double mutation elsewhere in the protein. We used a baculovirus-insect cell expression system to produce full-length proteins for these structural analyses. We related the AFM findings to cytotoxicity as measured by expression of the receptors in Drosophila motoneurons or in neuronal cells in culture. We found that the pathogenic AR mutants formed oligomeric fibrils up to 300-600nm in length. These were clearly different from annular oligomers 120-180nm in diameter formed by the nonpathogenic receptors. We could also show that melatonin, which is known to ameliorate the pathological phenotype in the fly model, caused polyQ-extended AR to form annular oligomers. Further comparative investigation of these reproducibly distinct toxic and non-toxic oligomers could advance our understanding of the molecular basis of the polyQ pathologies.
Asunto(s)
Atrofia Bulboespinal Ligada al X/metabolismo , Estructura Cuaternaria de Proteína , Receptores Androgénicos/química , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/patología , Células Cultivadas , Modelos Animales de Enfermedad , Drosophila , Humanos , Melatonina/farmacología , Microscopía de Fuerza Atómica , Neuronas/metabolismo , Péptidos , Pliegue de Proteína , Multimerización de Proteína , Deficiencias en la Proteostasis , Receptores Androgénicos/metabolismoRESUMEN
The molecular chaperone GRP78/BiP is a key regulator of protein folding in the endoplasmic reticulum, and it plays a pivotal role in cancer cell survival and chemoresistance. Inhibition of its function has therefore been an important strategy for inhibiting tumor cell growth in cancer therapy. Previous efforts to achieve this goal have used peptides that bind to GRP78/BiP conjugated to pro-drugs or cell-death-inducing sequences. Here, we describe a peptide that induces prostate tumor cell death without the need of any conjugating sequences. This peptide is a sequence derived from the cochaperone Bag-1. We have shown that this sequence interacts with and inhibits the refolding activity of GRP78/BiP. Furthermore, we have demonstrated that it modulates the unfolded protein response in ER stress resulting in PARP and caspase-4 cleavage. Prostate cancer cells stably expressing this peptide showed reduced growth and increased apoptosis in in vivo xenograft tumor models. Amino acid substitutions that destroyed binding of the Bag-1 peptide to GRP78/BiP or downregulation of the expression of GRP78 compromised the inhibitory effect of this peptide. This sequence therefore represents a candidate lead peptide for anti-tumor therapy.