Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angiogenesis ; 26(3): 437-461, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37017884

RESUMEN

Together with the platelet-derived growth factors (PDGFs), the vascular endothelial growth factors (VEGFs) form the PDGF/VEGF subgroup among cystine knot growth factors. The evolutionary relationships within this subgroup have not been examined thoroughly to date. Here, we comprehensively analyze the PDGF/VEGF growth factors throughout all animal phyla and propose a phylogenetic tree. Vertebrate whole-genome duplications play a role in expanding PDGF/VEGF diversity, but several limited duplications are necessary to account for the temporal pattern of emergence. The phylogenetically oldest PDGF/VEGF-like growth factor likely featured a C-terminus with a BR3P signature, a hallmark of the modern-day lymphangiogenic growth factors VEGF-C and VEGF-D. Some younger VEGF genes, such as VEGFB and PGF, appeared completely absent in important vertebrate clades such as birds and amphibia, respectively. In contrast, individual PDGF/VEGF gene duplications frequently occurred in fish on top of the known fish-specific whole-genome duplications. The lack of precise counterparts for human genes poses limitations but also offers opportunities for research using organisms that diverge considerably from humans. Sources for the graphical abstract: 326 MYA and older [1]; 72-240 MYA [2]; 235-65 MYA [3].


Asunto(s)
Factor de Crecimiento Derivado de Plaquetas , Factor A de Crecimiento Endotelial Vascular , Animales , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Filogenia , Factores de Crecimiento Endotelial Vascular , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Linfangiogénesis
2.
Blood ; 136(16): 1871-1883, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32842144

RESUMEN

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) stem cell niche, which provides a vital source of HSC regulatory signals. Radiation and chemotherapy disrupt the HSC niche, including its sinusoidal vessels and perivascular cells, contributing to delayed hematopoietic recovery. Thus, identification of factors that can protect the HSC niche during an injury could offer a significant therapeutic opportunity to improve hematopoietic regeneration. In this study, we identified a critical function for vascular endothelial growth factor-C (VEGF-C), that of maintaining the integrity of the BM perivascular niche and improving BM niche recovery after irradiation-induced injury. Both global and conditional deletion of Vegfc in endothelial or leptin receptor-positive (LepR+) cells led to a disruption of the BM perivascular niche. Furthermore, deletion of Vegfc from the microenvironment delayed hematopoietic recovery after transplantation by decreasing endothelial proliferation and LepR+ cell regeneration. Exogenous administration of VEGF-C via an adenoassociated viral vector improved hematopoietic recovery after irradiation by accelerating endothelial and LepR+ cell regeneration and by increasing the expression of hematopoietic regenerative factors. Our results suggest that preservation of the integrity of the perivascular niche via VEGF-C signaling could be exploited therapeutically to enhance hematopoietic regeneration.


Asunto(s)
Células de la Médula Ósea/metabolismo , Médula Ósea/metabolismo , Células Endoteliales/metabolismo , Nicho de Células Madre , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Biomarcadores , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de la radiación , Expresión Génica , Hematopoyesis/genética , Hematopoyesis/efectos de la radiación , Inmunofenotipificación , Ratones , Ratones Transgénicos , Modelos Biológicos , Unión Proteica , ARN Mensajero , Receptores de Leptina/metabolismo , Nicho de Células Madre/genética , Nicho de Células Madre/efectos de la radiación , Factor C de Crecimiento Endotelial Vascular/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948344

RESUMEN

In this focused review, we address the role of the kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen (PSA), in the regulation of angiogenesis. Early studies suggest that KLK3 is able to inhibit angiogenic processes, which is most likely dependent on its proteolytic activity. However, more recent evidence suggests that KLK3 may also have an opposite role, mediated by the ability of KLK3 to activate the (lymph)angiogenic vascular endothelial growth factors VEGF-C and VEGF-D, further discussed in the review.


Asunto(s)
Calicreínas/metabolismo , Neovascularización Patológica/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/fisiopatología , Factor C de Crecimiento Endotelial Vascular , Factor D de Crecimiento Endotelial Vascular
4.
Circ Res ; 119(2): 210-21, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27225479

RESUMEN

RATIONALE: Lymphatic vessel growth is mediated by major prolymphangiogenic factors, such as vascular endothelial growth factor (VEGF-C) and VEGF-D, among other endothelial effectors. Heparan sulfate is a linear polysaccharide expressed on proteoglycan core proteins on cell membranes and matrix, playing roles in angiogenesis, although little is known about any function(s) in lymphatic remodeling in vivo. OBJECTIVE: To explore the genetic basis and mechanisms, whereby heparan sulfate proteoglycans mediate pathological lymphatic remodeling. METHODS AND RESULTS: Lymphatic endothelial deficiency in the major heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1; involved in glycan-chain sulfation) was associated with reduced lymphangiogenesis in pathological models, including spontaneous neoplasia. Mouse mutants demonstrated tumor-associated lymphatic vessels with apoptotic nuclei. Mutant lymphatic endothelia demonstrated impaired mitogen (Erk) and survival (Akt) pathway signaling and reduced VEGF-C-mediated protection from starvation-induced apoptosis. Lymphatic endothelial-specific Ndst1 deficiency (in Ndst1(f/f)Prox1(+/CreERT2) mice) was sufficient to inhibit VEGF-C-dependent lymphangiogenesis. Lymphatic heparan sulfate deficiency reduced phosphorylation of the major lymphatic growth receptor VEGF receptor-3 in response to multiple VEGF-C species. Syndecan-4 was the dominantly expressed heparan sulfate proteoglycan in mouse lymphatic endothelia, and pathological lymphangiogenesis was impaired in Sdc4((-/-)) mice. On the lymphatic cell surface, VEGF-C induced robust association between syndecan-4 and VEGF receptor-3, which was sensitive to glycan disruption. Moreover, VEGF receptor-3 mitogen and survival signaling was reduced in the setting of Ndst1 or Sdc4 deficiency. CONCLUSIONS: These findings demonstrate the genetic importance of heparan sulfate and the major lymphatic proteoglycan syndecan-4 in pathological lymphatic remodeling. This may introduce novel future strategies to alter pathological lymphatic-vascular remodeling.


Asunto(s)
Linfangiogénesis/fisiología , Vasos Linfáticos/patología , Vasos Linfáticos/fisiología , Proteoglicanos/fisiología , Factor C de Crecimiento Endotelial Vascular/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Células Cultivadas , Humanos , Pulmón/citología , Pulmón/metabolismo , Ratones
5.
Genes Dev ; 24(9): 875-80, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20439428

RESUMEN

The Claudin-like protein of 24 kDa (CLP24) is a hypoxia-regulated transmembrane protein of unknown function. We show here that clp24 knockdown in Danio rerio and Xenopus laevis results in defective lymphatic development. Targeted disruption of Clp24 in mice led to enlarged lymphatic vessels having an abnormal smooth muscle cell coating. We also show that the Clp24(-/-) phenotype was further aggravated in the Vegfr2(+/LacZ) or Vegfr3(+/LacZ) backgrounds and that CLP24 interacts with vascular endothelial growth factor receptor-2 (VEGFR-2) and VEGFR-3 and attenuates the transcription factor CREB phosphorylation via these receptors. Our results indicate that CLP24 is a novel regulator of VEGFR-2 and VEGFR-3 signaling pathways and of normal lymphatic vessel structure.


Asunto(s)
Vasos Linfáticos/embriología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Vasos Linfáticos/patología , Ratones , Miocitos del Músculo Liso/patología , Fosforilación , Piel/citología
6.
Biochim Biophys Acta ; 1861(11): 1597-1604, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27377346

RESUMEN

Cytosolic phospholipase A2 alpha (cPLA2α) plays a key role in signaling in mammalian cells by releasing arachidonic acid (AA) from glycerophospholipids (GPLs) but the factors determining the specificity of cPLA2α for AA-containing GPLs are not well understood. Accordingly, we investigated those factors by determining the activity of human cPLA2α towards a multitude of GPL species present in micelles or bilayers. Studies on isomeric PC sets containing a saturated acyl chain of 6 to 24 carbons in the sn1 or sn2 position in micelles showed an abrupt decrease in hydrolysis when the length of the sn1 or sn2 chain exceeded 17 carbons suggesting that the acyl binding cavity on the enzyme is of the corresponding length. Notably, the saturated isomer pairs were hydrolyzed identically in micelles as well as in bilayers suggesting promiscuous binding of acyl chains to the active site of cPLA2α. Such promiscuous binding would explain the previous finding that cPLA2α has both PLA1 and PLA2 activities. Interestingly, increasing the length of either the sn1 or sn2 acyl chain inhibited the hydrolysis in bilayers far more than that in micelles suggesting that with micelles (loosely packed) substrate accommodation at the active site of cPLA2α is rate-limiting, while with bilayers (tightly packed) upward movement of the substrate from the bilayer (efflux) is the rate-limiting step. With the AA-containing PCs, the length of the saturated acyl chain also had a much stronger effect on hydrolysis in bilayers vs. micelles in agreement with this model. In contrast to saturated PCs, a marked isomer preference was observed for AA-containing PCs both in micelles and bilayers. In conclusion, these data significantly help to understand the mode of action and specificity of cPLA2α.


Asunto(s)
Fosfolipasas A2 Grupo IV/metabolismo , Humanos , Hidrólisis , Membrana Dobles de Lípidos/metabolismo , Micelas , Fosfatidilcolinas/metabolismo , Especificidad por Sustrato , Liposomas Unilamelares/metabolismo
7.
Circ Res ; 116(10): 1660-9, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25814692

RESUMEN

RATIONALE: Collagen- and calcium-binding EGF domain-containing protein 1 (CCBE1) is essential for lymphangiogenesis in vertebrates and has been associated with Hennekam syndrome. Recently, CCBE1 has emerged as a crucial regulator of vascular endothelial growth factor-C (VEGFC) signaling. OBJECTIVE: CCBE1 is a secreted protein characterized by 2 EGF domains and 2 collagen repeats. The functional role of the different CCBE1 protein domains is completely unknown. Here, we analyzed the functional role of the different CCBE1 domains in vivo and in vitro. METHODS AND RESULTS: We analyzed the functionality of several CCBE1 deletion mutants by generating knock-in mice expressing these mutants, by analyzing their ability to enhance Vegfc signaling in vivo in zebrafish, and by testing their ability to induce VEGFC processing in vitro. We found that deleting the collagen domains of CCBE1 has a much stronger effect on CCBE1 activity than deleting the EGF domains. First, although CCBE1ΔCollagen mice fully phenocopy CCBE1 knock-out mice, CCBE1ΔEGF knock-in embryos still form rudimentary lymphatics. Second, Ccbe1ΔEGF, but not Ccbe1ΔCollagen, could partially substitute for Ccbe1 to enhance Vegfc signaling in zebrafish. Third, CCBE1ΔEGF, similarly to CCBE1, but not CCBE1ΔCollagen could activate VEGFC processing in vitro. Furthermore, a Hennekam syndrome mutation within the collagen domain has a stronger effect than a Hennekam syndrome mutation within the EGF domain. CONCLUSIONS: We propose that the collagen domains of CCBE1 are crucial for the activation of VEGFC in vitro and in vivo. The EGF domains of CCBE1 are dispensable for regulation of VEGFC processing in vitro, however, they are necessary for full lymphangiogenic activity of CCBE1 in vivo.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Colágeno/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Enfermedades de los Genitales Masculinos/genética , Enfermedades de los Genitales Masculinos/metabolismo , Genotipo , Edad Gestacional , Células HEK293 , Humanos , Linfangiectasia Intestinal/genética , Linfangiectasia Intestinal/metabolismo , Vasos Linfáticos/embriología , Linfedema/genética , Linfedema/metabolismo , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Transfección , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
8.
J Biol Chem ; 290(16): 10093-103, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25713085

RESUMEN

The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca(2+)-independent PLA-ß (iPLAß) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAß as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAß-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated.


Asunto(s)
Glicerofosfolípidos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microsomas/enzimología , Fosfolipasas A2 Calcio-Independiente/genética , Baculoviridae/genética , Sitios de Unión , Pruebas de Enzimas , Regulación de la Expresión Génica , Vectores Genéticos , Glicerofosfolípidos/química , Células HeLa , Homeostasis/genética , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Cinética , Membrana Dobles de Lípidos/química , Micelas , Microsomas/química , Fosfolipasas A2 Calcio-Independiente/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Especificidad por Sustrato
9.
Development ; 140(7): 1497-506, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462469

RESUMEN

Vascular endothelial growth factor C (Vegfc) is a secreted protein that guides lymphatic development in vertebrate embryos. However, its role during developmental angiogenesis is not well characterized. Here, we identify a mutation in zebrafish vegfc that severely affects lymphatic development and leads to angiogenesis defects on sensitized genetic backgrounds. The um18 mutation prematurely truncated Vegfc, blocking its secretion and paracrine activity but not its ability to activate its receptor Flt4. When expressed in endothelial cells, vegfc(um18) could not rescue lymphatic defects in mutant embryos, but induced ectopic blood vessel branching. Furthermore, vegfc-deficient endothelial cells did not efficiently contribute to tip cell positions in developing sprouts. Computational modeling together with assessment of endothelial cell dynamics by time-lapse analysis suggested that an autocrine Vegfc/Flt4 loop plays an important role in migratory persistence and filopodia stability during sprouting. Our results suggest that Vegfc acts in two distinct modes during development: as a paracrine factor secreted from arteries to guide closely associated lymphatic vasculature and as an autocrine factor to drive migratory persistence during angiogenesis.


Asunto(s)
Vasos Sanguíneos/embriología , Sistema Linfático/embriología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Comunicación Autocrina/genética , Comunicación Autocrina/fisiología , Vasos Sanguíneos/crecimiento & desarrollo , Movimiento Celular/genética , Movimiento Celular/fisiología , Codón sin Sentido/fisiología , Embrión no Mamífero , Femenino , Sistema Linfático/crecimiento & desarrollo , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Comunicación Paracrina/genética , Comunicación Paracrina/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/genética
10.
Proc Natl Acad Sci U S A ; 110(32): 12960-5, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23878260

RESUMEN

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key drivers of blood and lymph vessel formation in development, but also in several pathological processes. VEGF-C signaling through VEGFR-3 promotes lymphangiogenesis, which is a clinically relevant target for treating lymphatic insufficiency and for blocking tumor angiogenesis and metastasis. The extracellular domain of VEGFRs consists of seven Ig homology domains; domains 1-3 (D1-3) are responsible for ligand binding, and the membrane-proximal domains 4-7 (D4-7) are involved in structural rearrangements essential for receptor dimerization and activation. Here we analyzed the crystal structures of VEGF-C in complex with VEGFR-3 domains D1-2 and of the VEGFR-3 D4-5 homodimer. The structures revealed a conserved ligand-binding interface in D2 and a unique mechanism for VEGFR dimerization and activation, with homotypic interactions in D5. Mutation of the conserved residues mediating the D5 interaction (Thr446 and Lys516) and the D7 interaction (Arg737) compromised VEGF-C induced VEGFR-3 activation. A thermodynamic analysis of VEGFR-3 deletion mutants showed that D3, D4-5, and D6-7 all contribute to ligand binding. A structural model of the VEGF-C/VEGFR-3 D1-7 complex derived from small-angle X-ray scattering data is consistent with the homotypic interactions in D5 and D7. Taken together, our data show that ligand-dependent homotypic interactions in D5 and D7 are essential for VEGFR activation, opening promising possibilities for the design of VEGFR-specific drugs.


Asunto(s)
Multimerización de Proteína , Estructura Terciaria de Proteína , Factor C de Crecimiento Endotelial Vascular/química , Receptor 3 de Factores de Crecimiento Endotelial Vascular/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Unión Competitiva , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Humanos , Ligandos , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación , Unión Proteica , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Termodinámica , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Difracción de Rayos X
11.
Circulation ; 129(19): 1962-71, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24552833

RESUMEN

BACKGROUND: Hennekam lymphangiectasia-lymphedema syndrome (Online Mendelian Inheritance in Man 235510) is a rare autosomal recessive disease, which is associated with mutations in the CCBE1 gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for collagen- and calcium-binding epidermal growth factor domains 1 (CCBE1) interactions with the vascular endothelial growth factor-C (VEGF-C) growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. METHODS AND RESULTS: By analyzing VEGF-C produced by CCBE1-transfected cells, we found that, whereas CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector-mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by adeno-associated viral vector-VEGF-C. CONCLUSIONS: These results identify A disintegrin and metalloprotease with thrombospondin motifs-3 as a VEGF-C-activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest that CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas de Unión al Calcio/metabolismo , Linfangiogénesis/fisiología , Procolágeno N-Endopeptidasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas ADAMTS , Adenoviridae/genética , Animales , Proteínas de Unión al Calcio/genética , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos , Modelos Animales , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Neovascularización Fisiológica/fisiología , Transfección , Proteínas Supresoras de Tumor/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
Circulation ; 127(4): 424-34, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23357661

RESUMEN

BACKGROUND: There is an unmet need for proangiogenic therapeutic molecules for the treatment of tissue ischemia in cardiovascular diseases. However, major inducers of angiogenesis such as vascular endothelial growth factor (VEGF/VEGF-A) have side effects that limit their therapeutic utility in vivo, especially at high concentrations. Angiopoietin-1 has been considered to be a blood vessel stabilization factor that can inhibit the intrinsic property of VEGF to promote vessel leakiness. In this study, we have designed and tested the angiogenic properties of chimeric molecules consisting of receptor-binding parts of VEGF and angiopoietin-1. We aimed at combining the activities of both factors into 1 molecule for easy delivery and expression in target tissues. METHODS AND RESULTS: The VEGF-angiopoietin-1 (VA1) chimeric protein bound to both VEGF receptor-2 and Tie2 and induced the activation of both receptors. Detailed analysis of VA1 versus VEGF revealed differences in the kinetics of VEGF receptor-2 activation and endocytosis, downstream kinase activation, and VE-cadherin internalization. The delivery of a VA1 transgene into mouse skeletal muscle led to increased blood flow and enhanced angiogenesis. VA1 was also very efficient in rescuing ischemic limb perfusion. However, VA1 induced less plasma protein leakage and myeloid inflammatory cell recruitment than VEGF. Furthermore, angioma-like structures associated with VEGF expression were not observed with VA1. CONCLUSIONS: The VEGF-angiopoietin-1 chimera is a potent angiogenic factor that triggers a novel mode of VEGF receptor-2 activation, promoting less vessel leakiness, less tissue inflammation, and better perfusion in ischemic muscle than VEGF. These properties of VA1 make it an attractive therapeutic tool.


Asunto(s)
Angiopoyetina 1/farmacología , Terapia Genética/métodos , Isquemia/tratamiento farmacológico , Neovascularización Fisiológica/fisiología , Proteínas Recombinantes de Fusión/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Adenoviridae/genética , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Animales , Permeabilidad Capilar/fisiología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Miembro Posterior/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isquemia/genética , Leucemia Mieloide , Ratones , Ratones Endogámicos , Músculo Esquelético/irrigación sanguínea , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor TIE-2 , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38940420

RESUMEN

New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.

14.
ACS Appl Mater Interfaces ; 16(15): 18643-18657, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564504

RESUMEN

Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.


Asunto(s)
Nanopartículas , Tendinopatía , Animales , Humanos , Ratones , Polímeros , ARN Interferente Pequeño/genética , Budesonida , Macrófagos , Inflamación , Lípidos , Fibrosis
15.
Am J Pathol ; 181(5): 1607-20, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22959907

RESUMEN

Chronic inflammation, a hallmark of obliterative bronchiolitis, is known to induce lymphangiogenesis. We therefore studied the role of lymphangiogenic vascular endothelial growth factor C (VEGF-C), its receptor VEGFR-3, and lymphangiogenesis during development of experimental obliterative bronchiolitis [ie, obliterative airway disease (OAD)] in rat tracheal allografts. The functional importance of VEGF-C was investigated by adenovirus-mediated overexpression of VEGF-C (AdVEGF-C), and by inhibition of VEGF-C activity with VEGFR-3-Ig (AdVEGFR-3-Ig). Analyses included histology, immunohistochemistry, and real-time RT-PCR 10 and 30 days after transplantation. In the course of OAD development, lymphangiogenesis was induced in the airway wall during the alloimmune response, which was reversed by cyclosporine A in a dose-dependent fashion. VEGF-C overexpression in tracheal allografts induced epithelial activation, neutrophil chemotaxis, and a shift toward a Th17 adaptive immune response, followed by enhanced lymphangiogenesis and the development of OAD. In contrast, inhibition of VEGF-C activity with VEGFR-3-Ig inhibited lymphangiogenesis and angiogenesis and reduced infiltration of CD4(+) T cells and the development of OAD. Lymphangiogenesis was linked to T-cell responses during the development of OAD, and VEGF-C/VEGFR-3 signaling modulated innate and adaptive immune responses in the development of OAD in rat tracheal allografts. Our results thus suggest VEGFR-3-signaling as a novel strategy to regulate T-cell responses in the development of obliterative bronchiolitis after lung transplantation.


Asunto(s)
Inmunidad Adaptativa/inmunología , Bronquiolitis Obliterante/inmunología , Bronquiolitis Obliterante/metabolismo , Inmunidad Innata/inmunología , Transducción de Señal/inmunología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Inmunidad Adaptativa/efectos de los fármacos , Animales , Bronquiolitis Obliterante/patología , Bronquiolitis Obliterante/fisiopatología , Quimiotaxis/efectos de los fármacos , Ciclosporina/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/patología , Rechazo de Injerto/complicaciones , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Rechazo de Injerto/fisiopatología , Inmunidad Innata/efectos de los fármacos , Inmunoglobulinas/farmacología , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Linfangiogénesis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Neutrófilos/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Tráquea/efectos de los fármacos , Tráquea/patología , Tráquea/trasplante , Trasplante Homólogo , Regulación hacia Arriba/efectos de los fármacos , Factor C de Crecimiento Endotelial Vascular/antagonistas & inhibidores
16.
Blood ; 117(5): 1507-15, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21148085

RESUMEN

Vascular endothelial growth factors (VEGFs) and their tyrosine kinase receptors (VEGFR-1-3) are central mediators of angiogenesis and lymphangiogenesis. VEGFR-3 ligands VEGF-C and VEGF-D are produced as precursor proteins with long N- and C-terminal propeptides and show enhanced VEGFR-2 and VEGFR-3 binding on proteolytic removal of the propeptides. Two different proteolytic cleavage sites have been reported in the VEGF-D N-terminus. We report here the crystal structure of the human VEGF-D Cys117Ala mutant at 2.9 Å resolution. Comparison of the VEGF-D and VEGF-C structures shows similar extended N-terminal helices, conserved overall folds, and VEGFR-2 interacting residues. Consistent with this, the affinity and the thermodynamic parameters for VEGFR-2 binding are very similar. In comparison with VEGF-C structures, however, the VEGF-D N-terminal helix was extended by 2 more turns because of a better resolution. Both receptor binding and functional assays of N-terminally truncated VEGF-D polypeptides indicated that the residues between the reported proteolytic cleavage sites are important for VEGF-D binding and activation of VEGFR-3, but not of VEGFR-2. Thus, we define here a VEGFR-2-specific form of VEGF-D that is angiogenic but not lymphangiogenic. These results provide important new insights into VEGF-D structure and function.


Asunto(s)
Músculo Esquelético/metabolismo , Factor D de Crecimiento Endotelial Vascular/química , Factor D de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Aminoácidos , Animales , Proliferación Celular , Células Cultivadas , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Técnicas para Inmunoenzimas , Inmunoprecipitación , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Músculo Esquelético/citología , Mutagénesis Sitio-Dirigida , Mutación/genética , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Factor C de Crecimiento Endotelial Vascular/química , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor D de Crecimiento Endotelial Vascular/genética
17.
Proc Natl Acad Sci U S A ; 107(6): 2425-30, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20145116

RESUMEN

Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel formation through activation of three receptor tyrosine kinases, VEGFR-1, -2, and -3. The extracellular domain of VEGF receptors consists of seven immunoglobulin homology domains, which, upon ligand binding, promote receptor dimerization. Dimerization initiates transmembrane signaling, which activates the intracellular tyrosine kinase domain of the receptor. VEGF-C stimulates lymphangiogenesis and contributes to pathological angiogenesis via VEGFR-3. However, proteolytically processed VEGF-C also stimulates VEGFR-2, the predominant transducer of signals required for physiological and pathological angiogenesis. Here we present the crystal structure of VEGF-C bound to the VEGFR-2 high-affinity-binding site, which consists of immunoglobulin homology domains D2 and D3. This structure reveals a symmetrical 22 complex, in which left-handed twisted receptor domains wrap around the 2-fold axis of VEGF-C. In the VEGFs, receptor specificity is determined by an N-terminal alpha helix and three peptide loops. Our structure shows that two of these loops in VEGF-C bind to VEGFR-2 subdomains D2 and D3, while one interacts primarily with D3. Additionally, the N-terminal helix of VEGF-C interacts with D2, and the groove separating the two VEGF-C monomers binds to the D2/D3 linker. VEGF-C, unlike VEGF-A, does not bind VEGFR-1. We therefore created VEGFR-1/VEGFR-2 chimeric proteins to further study receptor specificity. This biochemical analysis, together with our structural data, defined VEGFR-2 residues critical for the binding of VEGF-A and VEGF-C. Our results provide significant insights into the structural features that determine the high affinity and specificity of VEGF/VEGFR interactions.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular/química , Factor C de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Animales , Sitios de Unión/genética , Línea Celular , Supervivencia Celular , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Spodoptera , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/química , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/química , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
Sci Rep ; 12(1): 18157, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307539

RESUMEN

Vascular endothelial growth factor-C (VEGF-C) stimulates lymphatic vessel growth in transgenic models, via viral gene delivery, and as a recombinant protein. Expressing eukaryotic proteins like VEGF-C in bacterial cells has limitations, as these cells lack specific posttranslational modifications and provisions for disulfide bond formation. However, given the cost and time savings associated with bacterial expression systems, there is considerable value in expressing VEGF-C using bacterial cells. We identified two approaches that result in biologically active Escherichia coli-derived VEGF-C. Expectedly, VEGF-C expressed from a truncated cDNA became bioactive after in vitro folding from inclusion bodies. Given that VEGF-C is one of the cysteine-richest growth factors in humans, it was unclear whether known methods to facilitate correct cysteine bond formation allow for the direct expression of bioactive VEGF-C in the cytoplasm. By fusing VEGF-C to maltose-binding protein and expressing these fusions in the redox-modified cytoplasm of the Origami (DE3) strain, we could recover biological activity for deletion mutants lacking the propeptides of VEGF-C. This is the first report of a bioactive VEGF growth factor obtained from E. coli cells circumventing in-vitro folding.


Asunto(s)
Escherichia coli , Factor C de Crecimiento Endotelial Vascular , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Cisteína/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Unión a Maltosa/metabolismo
19.
Circulation ; 122(17): 1725-33, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20937974

RESUMEN

BACKGROUND: Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and neuropilin-1 and is abundantly expressed in the heart, skeletal muscle, and brown fat. The biological function of VEGF-B is incompletely understood. METHODS AND RESULTS: Unlike placenta growth factor, which binds to the same receptors, adeno-associated viral delivery of VEGF-B to mouse skeletal or heart muscle induced very little angiogenesis, vascular permeability, or inflammation. As previously reported for the VEGF-B(167) isoform, transgenic mice and rats expressing both isoforms of VEGF-B in the myocardium developed cardiac hypertrophy yet maintained systolic function. Deletion of the VEGF receptor-1 tyrosine kinase domain or the arterial endothelial Bmx tyrosine kinase inhibited hypertrophy, whereas loss of VEGF-B interaction with neuropilin-1 had no effect. Surprisingly, in rats, the heart-specific VEGF-B transgene induced impressive growth of the epicardial coronary vessels and their branches, with large arteries also seen deep inside the subendocardial myocardium. However, VEGF-B, unlike other VEGF family members, did not induce significant capillary angiogenesis, increased permeability, or inflammatory cell recruitment. CONCLUSIONS: VEGF-B appears to be a coronary growth factor in rats but not in mice. The signals for the VEGF-B-induced cardiac hypertrophy are mediated at least in part via the endothelium. Because cardiomyocyte damage in myocardial ischemia begins in the subendocardial myocardium, the VEGF-B-induced increased arterial supply to this area could have therapeutic potential in ischemic heart disease.


Asunto(s)
Permeabilidad Capilar/fisiología , Vasos Coronarios/crecimiento & desarrollo , Inflamación/fisiopatología , Neovascularización Fisiológica/fisiología , Factor B de Crecimiento Endotelial Vascular/fisiología , Adenoviridae/genética , Animales , Cardiomegalia/fisiopatología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Modelos Animales , Músculo Esquelético/irrigación sanguínea , Miocardio , Neuropilina-1/fisiología , Ratas , Ratas Transgénicas , Ratas Wistar , Factor B de Crecimiento Endotelial Vascular/genética
20.
Circ Res ; 104(11): 1302-12, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19443835

RESUMEN

The therapeutic potential of vascular endothelial growth factor (VEGF)-C and VEGF-D in skeletal muscle has been of considerable interest as these factors have both angiogenic and lymphangiogenic activities. Previous studies have mainly used adenoviral gene delivery for short-term expression of VEGF-C and VEGF-D in pig, rabbit, and mouse skeletal muscles. Here we have used the activated mature forms of VEGF-C and VEGF-D expressed via recombinant adeno-associated virus (rAAV), which provides stable, long-lasting transgene expression in various tissues including skeletal muscle. Mouse tibialis anterior muscle was transduced with rAAV encoding human or mouse VEGF-C or VEGF-D. Two weeks later, immunohistochemical analysis showed increased numbers of both blood and lymph vessels, and Doppler ultrasound analysis indicated increased blood vessel perfusion. The lymphatic vessels further increased at the 4-week time point were functional, as shown by FITC-lectin uptake and transport. Furthermore, receptor activation and arteriogenic activity were increased by an alanine substitution mutant of human VEGF-C (C137A) having an increased dimer stability and by a chimeric CAC growth factor that contained the VEGF receptor-binding domain flanked by VEGF-C propeptides, but only the latter promoted significantly more blood vessel perfusion when compared to the other growth factors studied. We conclude that long-term expression of VEGF-C and VEGF-D in skeletal muscle results in the generation of new functional blood and lymphatic vessels. The therapeutic value of intramuscular lymph vessels in draining tissue edema and lymphedema can now be evaluated using this model system.


Asunto(s)
Vasos Sanguíneos/fisiología , Corazón/fisiología , Vasos Linfáticos/fisiología , Músculo Esquelético/fisiología , Factor B de Crecimiento Endotelial Vascular/fisiología , Factor C de Crecimiento Endotelial Vascular/fisiología , Animales , Dimerización , Estabilidad de Medicamentos , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/irrigación sanguínea , Mutación , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA