Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002563, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573881

RESUMEN

Exploring the mechanisms that underpin symbiosis requires an understanding of how these complex interactions are maintained in diverse model systems. The ciliate protist, Paramecium bursaria, offers a valuable insight into how emergent endosymbiotic interactions have evolved.


Asunto(s)
Chlorella , Cilióforos , Paramecium , Simbiosis
2.
PLoS Genet ; 19(10): e1010913, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796765

RESUMEN

The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.


Asunto(s)
Aminoácidos , Cilióforos , Aminoácidos/genética , Secuencia de Aminoácidos , Código Genético , Cilióforos/genética , Codón de Terminación
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34521754

RESUMEN

Eukaryote-eukaryote endosymbiosis was responsible for the spread of chloroplast (plastid) organelles. Stability is required for the metabolic and genetic integration that drives the establishment of new organelles, yet the mechanisms that act to stabilize emergent endosymbioses-between two fundamentally selfish biological organisms-are unclear. Theory suggests that enforcement mechanisms, which punish misbehavior, may act to stabilize such interactions by resolving conflict. However, how such mechanisms can emerge in a facultative endosymbiosis has yet to be explored. Here, we propose that endosymbiont-host RNA-RNA interactions, arising from digestion of the endosymbiont population, can result in a cost to host growth for breakdown of the endosymbiosis. Using the model facultative endosymbiosis between Paramecium bursaria and Chlorella spp., we demonstrate that this mechanism is dependent on the host RNA-interference (RNAi) system. We reveal through small RNA (sRNA) sequencing that endosymbiont-derived messenger RNA (mRNA) released upon endosymbiont digestion can be processed by the host RNAi system into 23-nt sRNA. We predict multiple regions of shared sequence identity between endosymbiont and host mRNA, and demonstrate through delivery of synthetic endosymbiont sRNA that exposure to these regions can knock down expression of complementary host genes, resulting in a cost to host growth. This process of host gene knockdown in response to endosymbiont-derived RNA processing by host RNAi factors, which we term "RNAi collisions," represents a mechanism that can promote stability in a facultative eukaryote-eukaryote endosymbiosis. Specifically, by imposing a cost for breakdown of the endosymbiosis, endosymbiont-host RNA-RNA interactions may drive maintenance of the symbiosis across fluctuating ecological conditions.


Asunto(s)
Procesos Fototróficos/genética , ARN/genética , Simbiosis/genética , Chlorella/genética , Cloroplastos/genética , Eucariontes/genética , Paramecium/genética , Plastidios/genética , Interferencia de ARN/fisiología
4.
Pharmacol Ther ; 240: 108231, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35718294

RESUMEN

Cancer-associated fibroblasts (CAFs) are a common cell in the tumour microenvironment with diverse tumour-promoting functions. Their presence in tumours is commonly associated with poor prognosis making them attractive therapeutic targets, particularly in the context of immunotherapy where CAFs have been shown to promote resistance to checkpoint blockade. Previous attempts to inhibit CAFs clinically have not been successful, however, in part due to a lack of understanding of CAF heterogeneity and function, with some fibroblast populations potentially being tumour suppressive. Recent single-cell transcriptomic studies have advanced our understanding of fibroblast phenotypes in normal tissues and cancers, allowing for a more precise characterisation of CAF subsets and providing opportunities to develop new therapies. Here we review recent advances in the field, focusing on the evolving area of therapeutic CAF targeting.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fibroblastos
5.
R Soc Open Sci ; 8(4): 210140, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33996132

RESUMEN

Endosymbiosis was fundamental for the evolution of eukaryotic complexity. Endosymbiotic interactions can be dissected through forward- and reverse-genetic experiments, such as RNA-interference (RNAi). However, distinguishing small (s)RNA pathways in a eukaryote-eukaryote endosymbiotic interaction is challenging. Here, we investigate the repertoire of RNAi pathway protein-encoding genes in the model nascent endosymbiotic system, Paramecium bursaria-Chlorella spp. Using comparative genomics and transcriptomics supported by phylogenetics, we identify essential proteome components of the small interfering (si)RNA, scan (scn)RNA and internal eliminated sequence (ies)RNA pathways. Our analyses reveal that copies of these components have been retained throughout successive whole genome duplication (WGD) events in the Paramecium clade. We validate feeding-induced siRNA-based RNAi in P. bursaria via knock-down of the splicing factor, u2af1, which we show to be crucial to host growth. Finally, using simultaneous knock-down 'paradox' controls to rescue the effect of u2af1 knock-down, we demonstrate that feeding-induced RNAi in P. bursaria is dependent upon a core pathway of host-encoded Dcr1, Piwi and Pds1 components. Our experiments confirm the presence of a functional, host-derived RNAi pathway in P. bursaria that generates 23-nt siRNA, validating the use of the P. bursaria-Chlorella spp. system to investigate the genetic basis of a nascent endosymbiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA