Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(2): 274-286, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37272871

RESUMEN

Cytokines that signal via STAT1 and STAT3 transcription factors instruct decisions affecting tissue homeostasis, antimicrobial host defense, and inflammation-induced tissue injury. To understand the coordination of these activities, we applied RNA sequencing, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing to identify the transcriptional output of STAT1 and STAT3 in peritoneal tissues from mice during acute resolving inflammation and inflammation primed to drive fibrosis. Bioinformatics focused on the transcriptional signature of the immunomodulatory cytokine IL-6 in both settings and examined how profibrotic IFN-γ-secreting CD4+ T cells altered the interpretation of STAT1 and STAT3 cytokine cues. In resolving inflammation, STAT1 and STAT3 cooperated to drive stromal gene expression affecting antimicrobial immunity and tissue homeostasis. The introduction of IFN-γ-secreting CD4+ T cells altered this transcriptional program and channeled STAT1 and STAT3 to a previously latent IFN-γ activation site motif in Alu-like elements. STAT1 and STAT3 binding to this conserved sequence revealed evidence of reciprocal cross-regulation and gene signatures relevant to pathophysiology. Thus, we propose that effector T cells retune the transcriptional output of IL-6 by shaping a regulatory interplay between STAT1 and STAT3 in inflammation.


Asunto(s)
Interleucina-6 , Células TH1 , Animales , Ratones , Citocinas/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Retroelementos , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Células TH1/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215509

RESUMEN

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Asunto(s)
Nitrosaminas , Pancreatitis , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Enfermedad Aguda , Animales , Carcinógenos , Ceruletida/toxicidad , Citocinas , Desintegrinas , Endopeptidasas , Fibrosis , Interleucina-6/genética , Interleucina-6/metabolismo , Cetonas , Ratones , Nicotina , Pancreatitis/tratamiento farmacológico , Pancreatitis/genética , Péptido Hidrolasas , Factor de Necrosis Tumoral alfa/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037355

RESUMEN

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Asunto(s)
Proteínas de Unión al ADN , Inmunidad Innata , Interleucina-1beta , Interleucina-6 , Enfisema Pulmonar , Animales , Apoptosis , Caspasa 1/metabolismo , Receptor gp130 de Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Enfisema Pulmonar/inmunología
4.
Cancer Sci ; 115(6): 1834-1850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594840

RESUMEN

Constitutively active KRAS mutations are among the major drivers of lung cancer, yet the identity of molecular co-operators of oncogenic KRAS in the lung remains ill-defined. The innate immune cytosolic DNA sensor and pattern recognition receptor (PRR) Absent-in-melanoma 2 (AIM2) is best known for its assembly of multiprotein inflammasome complexes and promoting an inflammatory response. Here, we define a role for AIM2, independent of inflammasomes, in KRAS-addicted lung adenocarcinoma (LAC). In genetically defined and experimentally induced (nicotine-derived nitrosamine ketone; NNK) LAC mouse models harboring the KrasG12D driver mutation, AIM2 was highly upregulated compared with other cytosolic DNA sensors and inflammasome-associated PRRs. Genetic ablation of AIM2 in KrasG12D and NNK-induced LAC mouse models significantly reduced tumor growth, coincident with reduced cellular proliferation in the lung. Bone marrow chimeras suggest a requirement for AIM2 in KrasG12D-driven LAC in both hematopoietic (immune) and non-hematopoietic (epithelial) cellular compartments, which is supported by upregulated AIM2 expression in immune and epithelial cells of mutant KRAS lung tissues. Notably, protection against LAC in AIM2-deficient mice is associated with unaltered protein levels of mature Caspase-1 and IL-1ß inflammasome effectors. Moreover, genetic ablation of the key inflammasome adapter, ASC, did not suppress KrasG12D-driven LAC. In support of these in vivo findings, AIM2, but not mature Caspase-1, was upregulated in human LAC patient tumor biopsies. Collectively, our findings reveal that endogenous AIM2 plays a tumor-promoting role, independent of inflammasomes, in mutant KRAS-addicted LAC, and suggest innate immune DNA sensing may provide an avenue to explore new therapeutic strategies in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Proteínas de Unión al ADN , Inflamasomas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Animales , Inflamasomas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Caspasa 1/metabolismo , Caspasa 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Mutación , Nitrosaminas , Femenino , Citosol/metabolismo , Proliferación Celular , Línea Celular Tumoral
5.
Immunol Cell Biol ; 101(5): 444-457, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967659

RESUMEN

Helicobacter pylori (H. pylori) infection can trigger chronic gastric inflammation perpetuated by overactivation of the innate immune system, leading to a cascade of precancerous lesions culminating in gastric cancer. However, key regulators of innate immunity that promote H. pylori-induced gastric pathology remain ill-defined. The innate immune cytosolic DNA sensor absent in melanoma 2 (AIM2) contributes to the pathogenesis of numerous autoimmune and chronic inflammatory diseases, as well as cancers including gastric cancer. We therefore investigated whether AIM2 contributed to the pathogenesis of Helicobacter-induced gastric disease. Here, we reveal that AIM2 messenger RNA and protein expression levels are elevated in H. pylori-positive versus H. pylori-negative human gastric biopsies. Similarly, chronic Helicobacter felis infection in wild-type mice augmented Aim2 gene expression levels compared with uninfected controls. Notably, gastric inflammation and hyperplasia were less severe in H. felis-infected Aim2-/- versus wild-type mice, evidenced by reductions in gastric immune cell infiltrates, mucosal thickness and proinflammatory cytokine and chemokine release. In addition, H. felis-driven proliferation and apoptosis in both gastric epithelial and immune cells were largely attenuated in Aim2-/- stomachs. These observations in Aim2-/- mouse stomachs correlated with decreased levels of inflammasome activity (caspase-1 cleavage) and the mature inflammasome effector cytokine, interleukin-1ß. Taken together, this work uncovers a pathogenic role for the AIM2 inflammasome in Helicobacter-induced gastric disease, and furthers our understanding of the host immune response to a common pathogen and the complex and varying roles of AIM2 at different stages of cancerous and precancerous gastric disease.


Asunto(s)
Felis , Helicobacter , Lesiones Precancerosas , Neoplasias Gástricas , Animales , Humanos , Ratones , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Felis/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Helicobacter/metabolismo , Inflamasomas/metabolismo , Inflamación/patología , Lesiones Precancerosas/patología
6.
Immunity ; 40(1): 40-50, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412616

RESUMEN

Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.


Asunto(s)
Interleucina-6/metabolismo , Peritoneo/patología , Peritonitis/genética , Peritonitis/patología , Células TH1/inmunología , Enfermedad Aguda , Traslado Adoptivo , Animales , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Matriz Extracelular/inmunología , Retroalimentación Fisiológica , Fibrosis , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Células TH1/trasplante
7.
Gut ; 71(8): 1515-1531, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34489308

RESUMEN

OBJECTIVE: The absent in melanoma 2 (AIM2) cytosolic pattern recognition receptor and DNA sensor promotes the pathogenesis of autoimmune and chronic inflammatory diseases via caspase-1-containing inflammasome complexes. However, the role of AIM2 in cancer is ill-defined. DESIGN: The expression of AIM2 and its clinical significance was assessed in human gastric cancer (GC) patient cohorts. Genetic or therapeutic manipulation of AIM2 expression and activity was performed in the genetically engineered gp130 F/F spontaneous GC mouse model, as well as human GC cell line xenografts. The biological role and mechanism of action of AIM2 in gastric tumourigenesis, including its involvement in inflammasome activity and functional interaction with microtubule-associated end-binding protein 1 (EB1), was determined in vitro and in vivo. RESULTS: AIM2 expression is upregulated by interleukin-11 cytokine-mediated activation of the oncogenic latent transcription factor STAT3 in the tumour epithelium of GC mouse models and patients with GC. Genetic and therapeutic targeting of AIM2 in gp130 F/F mice suppressed tumourigenesis. Conversely, AIM2 overexpression augmented the tumour load of human GC cell line xenografts. The protumourigenic function of AIM2 was independent of inflammasome activity and inflammation. Rather, in vivo and in vitro AIM2 physically interacted with EB1 to promote epithelial cell migration and tumourigenesis. Furthermore, upregulated expression of AIM2 and EB1 in the tumour epithelium of patients with GC was independently associated with poor patient survival. CONCLUSION: AIM2 can play a driver role in epithelial carcinogenesis by linking cytokine-STAT3 signalling, innate immunity and epithelial cell migration, independent of inflammasome activation.


Asunto(s)
Melanoma , Neoplasias Gástricas , Animales , Carcinogénesis/genética , Movimiento Celular/genética , Receptor gp130 de Citocinas/metabolismo , ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata/genética , Inflamasomas/genética , Inflamasomas/metabolismo , Ratones , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/patología , Regulación hacia Arriba
8.
Am J Respir Cell Mol Biol ; 64(2): 183-195, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33181031

RESUMEN

Pulmonary emphysema is the major debilitating component of chronic obstructive pulmonary disease (COPD), which is a leading cause of morbidity and mortality worldwide. The ADAM17 (A disintegrin and metalloproteinase 17) protease mediates inflammation via ectodomain shedding of numerous proinflammatory cytokines, cytokine receptors, and adhesion molecules; however, its role in the pathogenesis of emphysema and COPD is poorly understood. This study aims to define the role of the protease ADAM17 in the pathogenesis of pulmonary emphysema. ADAM17 protein expression and activation was investigated in lung biopsies from patients with emphysema, as well as lungs of the emphysematous gp130F/F mouse model and an acute (4 d) cigarette smoke (CS)-induced lung pathology model. The Adam17ex/ex mice, which display significantly reduced global ADAM17 expression, were coupled with emphysema-prone gp130F/F mice to produce gp130F/F:Adam17ex/ex. Both Adam17ex/ex and wild-type mice were subjected to acute CS exposure. Histological, immunohistochemical, immunofluorescence, and molecular analyses as well as lung function tests were performed to assess pulmonary emphysema, inflammation, and alveolar cell apoptosis. ADAM17 was hyperphosphorylated in the lungs of patients with emphysema and also in emphysematous gp130F/F and CS-exposed mice. ADAM17 deficiency ameliorated the development of pulmonary emphysema in gp130F/F mice by suppressing elevated alveolar cell apoptosis. In addition, genetic blockade of ADAM17 protected mice from CS-induced pulmonary inflammation and alveolar cell apoptosis. Our study places the protease ADAM17 as a central molecular switch implicated in the development of pulmonary emphysema, which paves the way for using ADAM17 inhibitors as potential therapeutic agents to treat COPD and emphysema.


Asunto(s)
Proteína ADAM17/deficiencia , Proteína ADAM17/metabolismo , Pulmón/metabolismo , Enfisema Pulmonar/metabolismo , Animales , Apoptosis/fisiología , Citocinas/metabolismo , Humanos , Ratones , Neumonía/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Fumar/efectos adversos , Nicotiana/efectos adversos
9.
Gastroenterology ; 159(1): 169-182.e8, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169428

RESUMEN

BACKGROUND & AIMS: Helicobacter pylori induces strong inflammatory responses that are directed at clearing the infection, but if not controlled, these responses can be harmful to the host. We investigated the immune-regulatory effects of the innate immune molecule, nucleotide-binding oligomerization domain-like receptors (NLR) family CARD domain-containing 5 (NLRC5), in patients and mice with Helicobacter infection. METHODS: We obtained gastric biopsies from 30 patients in Australia. We performed studies with mice that lack NLRC5 in the myeloid linage (Nlrc5møKO) and mice without Nlrc5 gene disruption (controls). Some mice were gavaged with H pylori SS1 or Helicobacter felis; 3 months later, stomachs, spleens, and sera were collected, along with macrophages derived from bone marrow. Human and mouse gastric tissues and mouse macrophages were analyzed by histology, immunohistochemistry, immunoblots, and quantitative polymerase chain reaction. THP-1 cells (human macrophages, controls) and NLRC5-/- THP-1 cells (generated by CRISPR-Cas9 gene editing) were incubated with Helicobacter and gene expression and production of cytokines were analyzed. RESULTS: Levels of NLRC5 messenger RNA were significantly increased in gastric tissues from patients with H pylori infection, compared with patients without infection (P < .01), and correlated with gastritis severity (P < .05). H pylori bacteria induced significantly higher levels of chemokine and cytokine production by NLRC5-/- THP-1 macrophages than by control THP-1 cells (P < .05). After 3 months of infection with H felis, Nlrc5mø-KO mice developed gastric hyperplasia (P < .0001), splenomegaly (P < .0001), and increased serum antibody titers (P < .01), whereas control mice did not. Nlrc5mø-KO mice with chronic H felis infection had increased numbers of gastric B-cell follicles expressing CD19 (P < .0001); these follicles had features of mucosa-associated lymphoid tissue lymphoma. We identified B-cell-activating factor as a protein that promoted B-cell hyperproliferation in Nlrc5mø-KO mice. CONCLUSIONS: NLRC5 is a negative regulator of gastric inflammation and mucosal lymphoid formation in response to Helicobacter infection. Aberrant NLRC5 signaling in macrophages can promote B-cell lymphomagenesis during chronic Helicobacter infection.


Asunto(s)
Infecciones por Helicobacter/complicaciones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B de la Zona Marginal/inmunología , Neoplasias Gástricas/inmunología , Animales , Linfocitos B/inmunología , Biopsia , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter felis/inmunología , Helicobacter pylori/inmunología , Humanos , Hiperplasia/inmunología , Hiperplasia/microbiología , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/microbiología , Tejido Linfoide/patología , Linfoma de Células B de la Zona Marginal/microbiología , Linfoma de Células B de la Zona Marginal/patología , Masculino , Ratones , Ratones Noqueados , Transducción de Señal/inmunología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Células THP-1
10.
Am J Pathol ; 190(6): 1256-1270, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32201262

RESUMEN

Gastric cancer is associated with chronic inflammation (gastritis) triggered by persistent Helicobacter pylori (H. pylori) infection. Elevated tyrosine phosphorylation of the latent transcription factor STAT3 is a feature of gastric cancer, including H. pylori-infected tissues, and aligns with nuclear transcriptional activity. However, the transcriptional role of STAT3 serine phosphorylation, which promotes STAT3-driven mitochondrial activities, is unclear. Here, by coupling serine-phosphorylated (pS)-STAT3-deficient Stat3SA/SA mice with chronic H. felis infection, which mimics human H. pylori infection in mice, we reveal a key role for pS-STAT3 in promoting Helicobacter-induced gastric pathology. Immunohistochemical staining for infiltrating immune cells and expression analyses of inflammatory genes revealed that gastritis was markedly suppressed in infected Stat3SA/SA mice compared with wild-type mice. Stomach weight and gastric mucosal thickness were also reduced in infected Stat3SA/SA mice, which was associated with reduced proliferative potential of infected Stat3SA/SA gastric mucosa. The suppressed H. felis-induced gastric phenotype of Stat3SA/SA mice was phenocopied upon genetic ablation of signaling by the cytokine IL-11, which promotes gastric tumorigenesis via STAT3. pS-STAT3 dependency by Helicobacter coincided with transcriptional activity on STAT3-regulated genes, rather than mitochondrial and metabolic genes. In the gastric mucosa of mice and patients with gastritis, pS-STAT3 was constitutively expressed irrespective of Helicobacter infection. Collectively, these findings suggest an obligate requirement for IL-11 signaling via constitutive pS-STAT3 in Helicobacter-induced gastric carcinogenesis.


Asunto(s)
Mucosa Gástrica/metabolismo , Gastritis/metabolismo , Infecciones por Helicobacter/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Mucosa Gástrica/patología , Gastritis/patología , Helicobacter , Infecciones por Helicobacter/patología , Humanos , Ratones , Mitocondrias/metabolismo , Fosforilación , Transducción de Señal
11.
Cytokine ; 143: 155520, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33875334

RESUMEN

Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.


Asunto(s)
Interleucina-6/metabolismo , Sistema Respiratorio/metabolismo , Enfermedades Respiratorias/metabolismo , Animales , Humanos , Modelos Biológicos , Regeneración , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Enfermedades Respiratorias/virología , Transducción de Señal
12.
Carcinogenesis ; 41(4): 527-538, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31257400

RESUMEN

Lung cancer is the leading cause of cancer-related mortality, with most cases attributed to tobacco smoking, in which nicotine-derived nitrosamine ketone (NNK) is the most potent lung carcinogen. The ADAM17 protease is responsible for the ectodomain shedding of many pro-tumorigenic cytokines, growth factors and receptors, and therefore is an attractive target in cancer. However, the role of ADAM17 in promoting tobacco smoke carcinogen-induced lung carcinogenesis is unknown. The hypomorphic Adam17ex/ex mice-characterized by reduced global ADAM17 expression-were backcrossed onto the NNK-sensitive pseudo-A/J background. CRISPR-driven and inhibitor-based (GW280264X, and ADAM17 prodomain) ADAM17 targeting was employed in the human lung adenocarcinoma cell lines A549 and NCI-H23. Human lung cancer biopsies were also used for analyses. The Adam17ex/ex mice displayed marked protection against NNK-induced lung adenocarcinoma. Specifically, the number and size of lung lesions in NNK-treated pseudo-A/J Adam17ex/ex mice were significantly reduced compared with wild-type littermate controls. This was associated with lower proliferative index throughout the lung epithelium. ADAM17 targeting in A549 and NCI-H23 cells led to reduced proliferative and colony-forming capacities. Notably, among select ADAM17 substrates, ADAM17 deficiency abrogated shedding of the soluble IL-6 receptor (sIL-6R), which coincided with the blockade of sIL-6R-mediated trans-signaling via ERK MAPK cascade. Furthermore, NNK upregulated phosphorylation of p38 MAPK, whose pharmacological inhibition suppressed ADAM17 threonine phosphorylation. Importantly, ADAM17 threonine phosphorylation was significantly upregulated in human lung adenocarcinoma with smoking history compared with their cancer-free controls. Our study identifies the ADAM17/sIL-6R/ERK MAPK axis as a candidate therapeutic strategy against tobacco smoke-associated lung carcinogenesis.


Asunto(s)
Proteína ADAM17/metabolismo , Adenocarcinoma del Pulmón/etiología , Carcinogénesis/patología , Neoplasias Pulmonares/etiología , Contaminación por Humo de Tabaco/efectos adversos , Proteína ADAM17/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinógenos/toxicidad , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Nitrosaminas/toxicidad , Fosforilación , Transducción de Señal
13.
Gastroenterology ; 156(4): 1140-1155.e4, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30508510

RESUMEN

BACKGROUND & AIMS: Gastritis is associated with development of stomach cancer, but little is known about changes in microRNA expression patterns during gastric inflammation. Specific changes in gene expression in epithelial cells are difficult to monitor because of the heterogeneity of the tissue. We investigated epithelial cell-specific changes in microRNA expression during gastric inflammation and gastritis-associated carcinogenesis in mice. METHODS: We used laser microdissection to enrich epithelial cells from K19-C2mE transgenic mice, which spontaneously develop gastritis-associated hyperplasia, and Gan mice, which express activated prostaglandin E2 and Wnt in the gastric mucosa and develop gastric tumors. We measured expression of epithelial cell-enriched microRNAs and used bioinformatics analyses to integrate data from different systems to identify inflammation-associated microRNAs. We validated our findings in gastric tissues from mice and evaluated protein functions in gastric cell lines (SNU-719, SNU-601, SNU-638, AGS, and GIF-14) and knockout mice. Organoids were cultured from gastric corpus tissues of wild-type and miR-135b-knockout C57BL/6 mice. We measured levels of microRNAs in pairs of gastric tumors and nontumor mucosa from 28 patients in Japan. RESULTS: We found microRNA 135b (miR-135B) to be the most overexpressed microRNA in gastric tissues from K19-C2mE and Gan mice: levels increased during the early stages of gastritis-associated carcinogenesis. Levels of miR-135B were also increased in gastric tumor tissues from gp130F/F mice and patients compared with nontumor tissues. In gastric organoids and immortalized cell lines, expression of miR-135B was induced by interleukin 1 signaling. K19-C2mE mice with disruption of Mir-135b developed hyperplastic lesions that were 50% smaller than mice without Mir-135b disruption and had significant reductions in cell proliferation. Expression of miR-135B in gastric cancer cell lines increased their colony formation, migration, and sphere formation. We identified FOXN3 and RECK messenger RNAs (mRNAs) as targets of miR-135B; their knockdown reduced migration of gastric cancer cell lines. Levels of FOXN3 and RECK mRNAs correlated inversely with levels of miR-135B in human gastric tumors and in inflamed mucosa from K19-C2mE mice. CONCLUSIONS: We found expression of miR-135B to be up-regulated by interleukin L1 signaling in gastric cancer cells and organoids. miR-135B promotes invasiveness and stem-cell features of gastric cancer cells in culture by reducing FOXN3 and RECK messenger RNAs. Levels of these messenger RNA targets, which encode tumor suppressor, are reduced in human gastric tumors.


Asunto(s)
Carcinogénesis/genética , Mucosa Gástrica/patología , Gastritis/genética , Interleucina-1/metabolismo , MicroARNs/genética , Neoplasias Gástricas/genética , Animales , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Factores de Transcripción Forkhead , Proteínas Ligadas a GPI/genética , Gastritis/complicaciones , Técnicas de Silenciamiento del Gen , Humanos , Hiperplasia/genética , Ratones , MicroARNs/metabolismo , Organoides/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba
14.
Cytokine ; 130: 155059, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32200265

RESUMEN

Deregulated activation of the latent transcription factor STAT3 has been implicated in the pathogenesis of myeloproliferative and lymphoproliferative hematologic disorders. The uncontrolled activation of STAT3 has traditionally been assigned to its elevated phosphorylation at tyrosine 705 (pY705) and associated nuclear transcriptional activity. By contrast, a transcriptional role for serine 727 phosphorylation (pS727) of STAT3 has recently emerged, suggesting that pS727 may account for the pathological activity of STAT3 in certain disease settings. Here, by coupling pS727-STAT3-deficient Stat3SA/SA mice with a STAT3-driven mouse model (gp130F/F) for myeloproliferative and lymphoproliferative pathologies, we reveal a key role for pS727-STAT3 in promoting multiple hematologic pathologies. The genetic blockade of pS727-STAT3 in gp130F/F:Stat3SA/SA mice ameliorated the neutrophilia, thrombocytosis, splenomegaly and lymphadenopathy that are features of gp130F/F mice. The protection against thrombocytosis in gp130F/F:Stat3SA/SA mice coincided with normalized megakaryopoiesis in both bone marrow and spleen compartments. Interestingly, pS727-STAT3-mediated abnormal lymphopoiesis in gp130F/F mice was more pronounced in lymph nodes compared to thymus, and was characterized by elevated numbers of B cells at the expense of T cells. Furthermore, pS727-STAT3 dependency for these hematologic pathologies coincided with transcriptional activity on STAT3-regulated genes, rather than its effect on mitochondrial and metabolic genes. Collectively, these findings suggest that pS727 plays a critical pathological role in modulating the transcriptional activity of STAT3 in hematologic disorders.

15.
Int J Cancer ; 144(12): 3056-3069, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30536754

RESUMEN

Toll-like receptors (TLRs) play critical roles in host defense after recognition of conserved microbial- and host-derived components, and their dysregulation is a common feature of various inflammation-associated cancers, including gastric cancer (GC). Despite the recent recognition that metabolic reprogramming is a hallmark of cancer, the molecular effectors of altered metabolism during tumorigenesis remain unclear. Here, using bioenergetics function assays on human GC cells, we reveal that ligand-induced activation of TLR2, predominantly through TLR1/2 heterodimer, augments both oxidative phosphorylation (OXPHOS) and glycolysis, with a bias toward glycolytic activity. Notably, DNA microarray-based expression profiling of human cancer cells stimulated with TLR2 ligands demonstrated significant enrichment of gene-sets for oncogenic pathways previously implicated in metabolic regulation, including reactive oxygen species (ROS), p53 and Myc. Moreover, the redox gene encoding the manganese-dependent mitochondrial enzyme, superoxide dismutase (SOD)2, was strongly induced at the mRNA and protein levels by multiple signaling pathways downstream of TLR2, namely JAK-STAT3, JNK MAPK and NF-κB. Furthermore, siRNA-mediated suppression of SOD2 ameliorated the TLR2-induced metabolic shift in human GC cancer cells. Importantly, patient-derived tissue microarrays and bioinformatics interrogation of clinical datasets indicated that upregulated expression of TLR2 and SOD2 were significantly correlated in human GC, and the TLR2-SOD2 axis was associated with multiple clinical parameters of advanced stage disease, including distant metastasis, microvascular invasion and stage, as well as poor survival. Collectively, our findings reveal a novel TLR2-SOD2 axis as a potential biomarker for therapy and prognosis in cancer.


Asunto(s)
Neoplasias Gástricas/metabolismo , Superóxido Dismutasa/metabolismo , Receptor Toll-Like 2/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Reprogramación Celular/fisiología , Metabolismo Energético , Inducción Enzimática , Glucólisis , Humanos , Inmunohistoquímica , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Neoplasias Gástricas/patología , Análisis de Matrices Tisulares , Regulación hacia Arriba
16.
Int J Cancer ; 143(1): 167-178, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29417587

RESUMEN

Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F ) of gastric cancer, where tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gastric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing CD21+ cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interestingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in patients, it did not indicate a favourable prognosis.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Estructuras Linfoides Terciarias/metabolismo , Animales , Quimiocinas/genética , Receptor gp130 de Citocinas/genética , Modelos Animales de Enfermedad , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Humanos , Ratones , Pronóstico , Factor de Transcripción STAT3/genética , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Análisis de Supervivencia , Estructuras Linfoides Terciarias/genética , Estructuras Linfoides Terciarias/inmunología
17.
J Biol Chem ; 291(41): 21703-21716, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27539849

RESUMEN

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are IL-6 family members with a wide range of biological functions. Human OSM (hOSM) and murine LIF (mLIF) act in mouse cells via a LIF receptor (LIFR)-glycoprotein 130 (gp130) heterodimer. In contrast, murine OSM (mOSM) signals mainly via an OSM receptor (OSMR)-gp130 heterodimer and binds with only very low affinity to mLIFR. hOSM and mLIF stimulate bone remodeling by both reducing osteocytic sclerostin and up-regulating the pro-osteoclastic factor receptor activator of NF-κB ligand (RANKL) in osteoblasts. In the absence of OSMR, mOSM still strongly suppressed sclerostin and stimulated bone formation but did not induce RANKL, suggesting that intracellular signaling activated by the low affinity interaction of mOSM with mLIFR is different from the downstream effects when mLIF or hOSM interacts with the same receptor. Both STAT1 and STAT3 were activated by mOSM in wild type cells or by mLIF/hOSM in wild type and Osmr-/- cells. In contrast, in Osmr-/- primary osteocyte-like cells stimulated with mOSM (therefore acting through mLIFR), microarray expression profiling and Western blotting analysis identified preferential phosphorylation of STAT3 and induction of its target genes but not of STAT1 and its target genes; this correlated with reduced phosphorylation of both gp130 and LIFR. In a mouse model of spontaneous osteopenia caused by hyperactivation of STAT1/3 signaling downstream of gp130 (gp130Y757F/Y757F), STAT1 deletion rescued the osteopenic phenotype, indicating a beneficial effect of promoting STAT3 signaling over STAT1 downstream of gp130 in this low bone mass condition, and this may have therapeutic value.


Asunto(s)
Enfermedades Óseas Metabólicas/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Oncostatina M/metabolismo , Osteocitos/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Huesos/metabolismo , Huesos/patología , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Ratones , Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/metabolismo , Tamaño de los Órganos , Osteocitos/patología , Fosforilación/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT3/genética
18.
Int J Cancer ; 140(10): 2331-2343, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198009

RESUMEN

Pancreatic cancer (PC) is largely refractory to existing therapies used in unselected patient trials, thus emphasizing the pressing need for new approaches for patient selection in personalized medicine. KRAS mutations occur in 90% of PC patients and confer resistance to epidermal growth factor receptor (EGFR) inhibitors (e.g., panitumumab), suggesting that KRAS wild-type PC patients may benefit from targeted panitumumab therapy. Here, we use tumor tissue procured by endoscopic ultrasound-guided fine-needle aspirate (EUS-FNA) to compare the in vivo sensitivity in patient-derived xenografts (PDXs) of KRAS wild-type and mutant PC tumors to panitumumab, and to profile the molecular signature of these tumors in patients with metastatic or localized disease. Specifically, RNASeq of EUS-FNA-derived tumor RNA from localized (n = 20) and metastatic (n = 20) PC cases revealed a comparable transcriptome profile. Screening the KRAS mutation status of tumor genomic DNA obtained from EUS-FNAs stratified PC patients into either KRAS wild-type or mutant cohorts, and the engraftment of representative KRAS wild-type and mutant EUS-FNA tumor samples into NOD/SCID mice revealed that the growth of KRAS wild-type, but not mutant, PDXs was selectively suppressed with panitumumab. Furthermore, in silico transcriptome interrogation of The Cancer Genome Atlas (TCGA)-derived KRAS wild-type (n = 38) and mutant (n = 132) PC tumors revealed 391 differentially expressed genes. Taken together, our study validates EUS-FNA for the application of a novel translational pipeline comprising KRAS mutation screening and PDXs, applicable to all PC patients, to evaluate personalized anti-EGFR therapy in patients with KRAS wild-type tumors.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Mutación/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Western Blotting , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proliferación Celular/efectos de los fármacos , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Femenino , Perfilación de la Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estadificación de Neoplasias , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Panitumumab , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
20.
Cytokine ; 92: 118-123, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28160627

RESUMEN

Deregulated gp130-dependent STAT3 signalling by the pleiotropic cytokine interleukin (IL)-11 has been implicated in the pathogenesis of gastric cancer (GC), the third most common cancer worldwide. While the IL-11-gp130-STAT3 signalling axis has traditionally been thought to exclusively use the membrane-bound IL-11 receptor (mIL-11R), recent evidence suggests that mIL-11R can be proteolytically cleaved to generate a soluble form (sIL-11R) which can elicit trans-signalling. Since the role of IL-11 trans-signalling in disease pathogenesis is unknown, here we have employed the IL-11-driven gp130F/F spontaneous model of GC to determine whether IL-11 trans-signalling promotes gastric tumourigenesis. sIL-11R protein was detectable in gastric tissue from GC patients, and sIL-11R levels were elevated in tumours of gp130F/F mice compared to matched non-tumours. Among candidate proteases associated with the generation of sIL-11R, ADAM10 and the related metalloprotease ADAM17 were significantly upregulated in tumours of both gp130F/F mice and GC patients compared to matched non-tumour tissues. The genetic blockade of IL-11 trans-signalling in gp130F/F mice upon the transgenic over-expression of the trans-signalling antagonist, sgp130Fc, failed to suppress gastric inflammation and associated tumour growth, and also had no effect on reducing hyper-activated STAT3 levels. Furthermore, a non-essential role for ADAM17 in IL-11-driven gastric tumourigenesis was supported by the observation that the tumour burden was unaffected in gp130F/F:Adam17ex/ex mice in which ADAM17 expression levels have been substantially reduced. Collectively, these findings suggest that classic signalling rather than trans-signalling is the mode by which IL-11 promotes gastric tumourigenesis.


Asunto(s)
Interleucina-11/inmunología , Proteínas de Neoplasias/inmunología , Transducción de Señal/inmunología , Neoplasias Gástricas/inmunología , Proteína ADAM10/genética , Proteína ADAM10/inmunología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/inmunología , Animales , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/inmunología , Interleucina-11/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA