Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 593(7857): 108-113, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33790464

RESUMEN

Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.


Asunto(s)
Hipotálamo/fisiología , Vocalización Animal/fisiología , Animales , Cortejo , Receptor alfa de Estrógeno/metabolismo , Femenino , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/fisiología , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Área Preóptica/citología , Área Preóptica/fisiología , Sinapsis/metabolismo , Factores de Tiempo , Ondas Ultrasónicas
2.
JID Innov ; 3(2): 100177, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36876220

RESUMEN

Psoriasis is characterized by intense pruritus, with a subset of individuals with psoriasis experiencing thermal hypersensitivity. However, the pathophysiology of thermal hypersensitivity in psoriasis and other skin conditions remains enigmatic. Linoleic acid is an omega-6 fatty acid that is concentrated in the skin, and oxidation of linoleic acid into metabolites with multiple hydroxyl and epoxide functional groups has been shown to play a role in skin barrier function. Previously, we identified several linoleic acid‒derived mediators that were more concentrated in psoriatic lesions, but the role of these lipids in psoriasis remains unknown. In this study, we report that two such compounds-9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate-are present as free fatty acids and induce nociceptive behavior in mice but not in rats. By chemically stabilizing 9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate through the addition of methyl groups, we observed pain and hypersensitization in mice. The nociceptive responses suggest an involvement of the TRPA1 channel, whereas hypersensitive responses induced by these mediators may require both TRPA1 and TRPV1 channels. Furthermore, we showed that 9,10,13-trihydroxy-octadecenoate‒induced calcium transients in sensory neurons are mediated through the Gßγ subunit of an unidentified G-protein coupled receptor (GPCR). Overall, mechanistic insights from this study will guide the development of potential therapeutic targets for the treatment of pain and hypersensitivity.

3.
Pain ; 161(12): 2775-2785, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32694380

RESUMEN

Chronic posttraumatic headache (PTH) is among the most common and disabling sequelae of traumatic brain injury (TBI). Current PTH treatments are often only partially effective and have problematic side effects. We previously showed in a small randomized trial of patients with chronic nontraumatic headaches that manipulation of dietary fatty acids decreased headache frequency, severity, and pain medication use. Pain reduction was associated with alterations in oxylipins derived from n-3 and n-6 fatty acids, suggesting that oxylipins could potentially mediate clinical pain reduction. The objective of this study was to investigate whether circulating oxylipins measured in the acute setting after TBI could serve as prognostic biomarkers for developing chronic PTH. Participants enrolled in the Traumatic Head Injury Neuroimaging Classification Protocol provided serum within 3 days of TBI and were followed up at 90 days postinjury with a neurobehavioral symptom inventory (NSI) and satisfaction with life survey. Liquid chromatography-tandem mass spectrometry methods profiled 39 oxylipins derived from n-3 docosahexaenoic acid (DHA), and n-6 arachidonic acid and linoleic acid. Statistical analyses assessed the association of oxylipins with headache severity (primary outcome, measured by headache question on NSI) as well as associations between oxylipins and total NSI or satisfaction with life survey scores. Among oxylipins, 4-hydroxy-DHA and 19,20-epoxy-docosapentaenoate (DHA derivatives) were inversely associated with headache severity, and 11-hydroxy-9-epoxy-octadecenoate (a linoleic acid derivative) was positively associated with headache severity. These findings support a potential for DHA-derived oxylipins as prognostic biomarkers for development of chronic PTH.


Asunto(s)
Ácidos Docosahexaenoicos , Oxilipinas , Biomarcadores , Cefalea , Humanos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA