Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 646: 8-18, 2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36696754

RESUMEN

A severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) surrogate virus neutralization test (sVNT) was used to determine the degree of inhibition of binding between human angiotensin converting enzyme 2 (hACE2) and the receptor binding domain (RBD) of spike protein by neutralizing antibodies in a biosafety level 2 facility. Here, to improve the sensitivity and specificity of the commercial sVNT, we developed a new biotin based sVNT using biotinylated RBD and HRP conjugated streptavidin instead of HRP conjugated RBD for direct detection in an ELISA assay that strongly correlated to the FDA approved cPass sVNT commercial kit (R2 = 0.8521) and pseudo virus neutralization test (R2 = 0.9006) (pVNT). The biotin based sVNT was evaluated in 535 postvaccination serum samples corresponding to second and third boosts of AZD1222 and BNT162b2 vaccines of the wild type strain. We confirmed that the neutralizing antibodies against SARS-CoV-2 variants in second vaccination sera decreased after a median of 141.5 days. Furthermore, vaccination sera from BNT162b2-BNT162b2 vaccines maintained neutralizing antibodies for longer than those of AZD1222 only vaccination. In addition, both vaccines maintained high neutralizing antibodies in third vaccination sera against Omicron BA.2 after a median of 27 days, but neutralizing antibodies significantly decreased after a median of 141.5 days. Along with the cPass sVNT commercial kit, biotin based sVNTs may also be suitable for specifically detecting neutralizing antibodies against multiple SARS-CoV-2 variants; however, to initially monitor the neutralizing antibodies in vaccinated sera using high throughput screening, conventional PRNT could be replaced by sVNT to circumvent the inconvenience of a long test time.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Biotina , Vacuna BNT162 , ChAdOx1 nCoV-19 , Pruebas de Neutralización , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
2.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36634813

RESUMEN

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Asunto(s)
COVID-19 , Animales , Cricetinae , Ratones , Humanos , SARS-CoV-2 , Pandemias , Anticuerpos Neutralizantes , Mesocricetus , Modelos Animales de Enfermedad
3.
Arch Virol ; 168(1): 21, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593422

RESUMEN

African swine fever (ASF) is a deadly disease in swine caused by African swine fever virus (ASFV). The global spread of ASFV has resulted in significant economic losses worldwide. Improved early detection has been the most important first line of defense for preventing ASF outbreaks and for activating control measures. Despite the availability of rapid amplification methods, nucleic acid extraction from specimens still needs to be performed in a laboratory. To facilitate this step, we exploited the strong affinity of biotin-streptavidin binding by functionalizing streptavidin-coated magnetic beads with biotinylated oligonucleotide capture probes to efficiently capture genotype II ASFV DNA directly from crude clinical samples. The captured DNA is suitable for detection using real-time quantitative PCR (qPCR) and recombinase polymerase amplification (RPA). In this study, ASFV DNA was efficiently captured from swine feces, serum, and tissue samples. Both DNA-capture-assisted qPCR and RPA-based detection methods have a limit of detection (LOD) of 102 copies/µl, which is comparable to those of commercially available kits. In addition, an RPA-SYBR Green I method was developed for the immediate visual detection of ASFV DNA, which is time-saving and efficient for resource-limited field settings. In summary, a rapid, versatile, sequence-specific DNA capture method was developed to efficiently capture ASFV DNA from swine clinical samples and subsequent detection by qPCR and RPA, which has the potential to be used for robust screening and surveillance of ASFV and in point-of-care (POC) diagnostics.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas , Estreptavidina/genética , ADN Viral/genética , Fenómenos Magnéticos , Sensibilidad y Especificidad
4.
Arch Virol ; 167(11): 2133-2142, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35821149

RESUMEN

Mammalian orthoreoviruses (MEVs) that can cause enteric, respiratory, and encephalitic infections have been identified in a wide variety of mammalian species. Here, we report a novel MRV type 1 strain detected in Miniopterus schreibersii that may have resulted from reassortment events. Using next-generation RNA sequencing (RNA-seq), we found that the ratios of the RNA levels of the 10 reovirus segments in infected cells were constant during the late stages of infection. We also discovered that the relative abundance of each segment differed. Notably, the relative abundance of M2 (encoding the µ1 protein) and S4 (encoding the σ3 protein) RNAs was higher than that of the others throughout the infection. Additionally, massive junctions were identified. These results support the hypothesis that defective genome segments are generated and that cross-family recombination occurs. These data may further the study of gene function, viral replication, and virus evolution.


Asunto(s)
Quirópteros , Orthoreovirus , Reoviridae , Animales , Genoma Viral , Orthoreovirus/genética , ARN , RNA-Seq , Reoviridae/genética
5.
Arch Virol ; 167(3): 871-879, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35137250

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Other coronaviruses (CoVs) can also infect humans, although the majority cause only mild respiratory symptoms. Because early diagnosis of SARS-CoV-2 is critical for preventing further transmission events and improving clinical outcomes, it is important to be able to distinguish SARS-CoV-2 from other SARS-related CoVs in respiratory samples. Therefore, we developed and evaluated a novel reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the genes encoding the spike (S) and membrane (M) proteins to enable the rapid identification of SARS-CoV-2, including several new circulating variants and other emerging SARS-like CoVs. By analysis of in vitro-transcribed mRNA, we established multiplex RT-qPCR assays capable of detecting 5 × 10° copies/reaction. Using RNA extracted from cell culture supernatants, our multiple simultaneous SARS-CoV-2 assays had a limit of detection of 1 × 10° TCID50/mL and showed no cross-reaction with human CoVs or other respiratory viruses. We also validated our method using human clinical samples from patients with COVID-19 and healthy individuals, including nasal swab and sputum samples. This novel one-step multiplex RT-qPCR assay can be used to improve the laboratory diagnosis of human-pathogenic CoVs, including SARS-CoV-2, and may be useful for the identification of other SARS-like CoVs of zoonotic origin.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico , Estudios de Factibilidad , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y Especificidad
6.
Arch Virol ; 166(11): 3013-3021, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34402973

RESUMEN

In recent years, several novel circular single-stranded DNA viruses have been detected in various mammals, birds, insects, and environmental samples using metagenomic and high-throughput sequencing approaches. In this study, we tested for the presence of circoviruses in 243 bat fecal samples collected between 2018 and 2019 from 48 sampling sites across Korea. To detect circoviruses, nested PCR was performed with degenerate primers targeting a conserved replication-associated protein (rep) gene of circovirus/cyclovirus. Among 243 samples tested, a total of 37 fecal samples from 14 sampling sites were PCR-positive for circoviruses at a frequency rate of 15.23%. We obtained 36 partial rep gene sequences of circoviruses and one complete genome sequence of bat-associated circovirus 12, encompassing a genome size of 2097 nt containing two inversely arranged open reading frames and a conserved nonamer sequence in the apex of a stem-loop structure. In addition, we found four bat species that were harboring circoviruses in Korea based on species identification PCR of circovirus-positive bat fecal samples. Detailed sequence analysis indicated that the bat-associated circovirus sequences identified in this study were related to those of known bat and avian groups of circoviruses. Herein, we report evidence for the presence of bat-associated circoviruses in Korean bats.


Asunto(s)
Quirópteros/virología , Circovirus/genética , Circovirus/aislamiento & purificación , Filogenia , Animales , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/virología , Heces/virología , República de Corea
7.
Arch Virol ; 166(3): 885-890, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33454861

RESUMEN

African swine fever (ASF) is a highly infectious disease of pigs caused by African swine fever virus (ASFV). In order to identify potential genetic variations among ASFV strains circulating in Vietnam, 26 ASFV isolates from organs and blood samples collected from domestic pigs from 23 different provinces of northern, central and southern Vietnam during 2019-2020 ASF outbreaks were genetically characterized. Nucleotide sequences were determined for a portion of the B646L (p72) gene, the complete E183L (p54) gene, the variable region of EP402R (CD2v), the central variable region (CVR) of pB602L, and a tandem repeat sequence (TRS) between the I73R and I329L genes. Analysis of the partial B646L (p72) and EP402R (CD2v) gene sequences and the full-length E183L (p54) gene sequence showed that all 26 ASFV isolates belonged to genotype II and serotype VIII and that they were identical to the strain Georgia/2007/1 and all ASFV strains sequenced in China. The TRS between the I73R and I329L genes contained a 10-nucleotide insertion that was observed in the Chinese ASFV strain CN201801 isolated from domestic pigs in 2018, but not in the Georgia/2007/1 and China/Jilin/2018/boar strains isolated from wild boar in China. This is the first intra-epidemic genome analysis reported for the ASFV strains circulating in Vietnam.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Variación Genética/genética , Genoma Viral/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Secuencia de Aminoácidos/genética , Animales , ADN Viral/genética , Mutagénesis Insercional/genética , Análisis de Secuencia de ADN , Sus scrofa/virología , Porcinos , Secuencias Repetidas en Tándem/genética , Vietnam/epidemiología
8.
Curr Microbiol ; 78(11): 3835-3842, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34546415

RESUMEN

Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic (HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential threats to human and animal health.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Gripe Aviar , Animales , Pollos , Femenino , Genes Virales , Humanos , Gripe Aviar/epidemiología , Aves de Corral , Vietnam
9.
Angew Chem Int Ed Engl ; 59(28): 11540-11549, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239636

RESUMEN

As agonists of TLR7/8, single-stranded RNAs (ssRNAs) are safe and promising adjuvants that do not cause off-target effects or innate immune overactivation. However, low stability prevents them from mounting sufficient immune responses. This study evaluates the adjuvant effects of ssRNA derived from the cricket paralysis virus intergenic region internal ribosome entry site, formulated as nanoparticles with a coordinative amphiphile, containing a zinc/dipicolylamine complex moiety as a coordinative phosphate binder, as a stabilizer for RNA-based adjuvants. The nanoformulated ssRNA adjuvant was resistant to enzymatic degradation in vitro and in vivo, and that with a coordinative amphiphile bearing an oleyl group (CA-O) was approximately 100 nm, promoted effective recognition, and improved activation of antigen-presenting cells, leading to better induction of neutralizing antibodies following single immunization. Hence, CA-O may increase the efficacy of ssRNA-based adjuvants, proving useful to meet the urgent need for vaccines during pathogen outbreaks.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Células Presentadoras de Antígenos/inmunología , Composición de Medicamentos , Inmunidad Humoral/efectos de los fármacos , Nanotecnología , ARN/química , Adyuvantes Inmunológicos/química , Animales , Humanos
10.
Emerg Infect Dis ; 25(7): 1433-1435, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31075078

RESUMEN

African swine fever is one of the most dangerous diseases of swine. We confirmed the 2019 outbreak in Vietnam by real-time reverse transcription PCR. The causative strain belonged to p72 genotype II and was 100% identical with viruses isolated in China (2018) and Georgia (2007). International prevention and control collaboration is needed.


Asunto(s)
Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/historia , Fiebre Porcina Africana/virología , Animales , Asfarviridae/clasificación , Asfarviridae/genética , ADN Viral , Brotes de Enfermedades , Genes Virales , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XXI , Filogenia , Análisis de Secuencia de ADN , Porcinos
11.
Arch Virol ; 164(11): 2881-2885, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31456087

RESUMEN

Aquatic birds are known to be a reservoir for the most common influenza A viruses (IAVs). In the annual surveillance program, we collected the feces of migratory birds for the detection of IAVs in South Korea in November 2016. A novel reassorted H3N3 avian influenza virus (AIV) containing genes from viruses of wild and domestic birds was identified and named A/aquatic bird/South Korea/sw006/2016(H3N3). The polymerase basic 2 (PB2) and non-structural (NS) genes of this isolate are most closely related to those of wild-bird-origin AIV, while the polymerase basic 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), and matrix (M) genes are most closely related to those of domestic-bird-origin AIV. A/aquatic bird/South Korea/sw006/2016 contains PA, NP, M, and NS genes were most closely related to those of AIV subtype H4 and PB2, PB1, and HA genes that are most closely related to those of AIV subtype H3N8, while the NA gene was most closely related to those of subtype H10, which was recently detected in humans in China. These results suggest that novel reassortment of AIV strains occurred due to interaction between wild and domestic birds. Hence, we emphasize the need for continued surveillance of avian influenza virus in bird populations.


Asunto(s)
Genoma Viral/genética , Subtipo H3N8 del Virus de la Influenza A/genética , Gripe Aviar/virología , Virus Reordenados/genética , Animales , Aves/virología , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Neuraminidasa/genética , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Secuenciación Completa del Genoma
12.
Adv Funct Mater ; 28(34): 1800960, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32313543

RESUMEN

Highly pathogenic avian influenza virus (HPAIV) infections have occurred continuously and crossed the species barrier to humans, leading to fatalities. A polymerase chain reaction based molecular test is currently the most sensitive diagnostic tool for HPAIV; however, the results must be analyzed in centralized diagnosis systems by a trained individual. This requirement leads to delays in quarantine and isolation. To control the spread of HPAIV, rapid and accurate diagnostics suitable for field testing are needed, and the tests must facilitate a differential diagnosis between HPAIV and low pathogenic avian influenza virus (LPAIV), which undergo cleavage specifically by trypsin- or furin-like proteases, respectively. In this study, a differential avian influenza virus rapid test kit is developed and evaluated in vitro and using clinical specimens from HPAIV H5N1-infected animals. It is demonstrated that this rapid test kit provides highly sensitive and specific detection of HPAIV and LPAIV and is thus a useful field diagnostic tool for H5N1 HPAIV outbreaks and for rapid quarantine control of the disease.

13.
Arch Virol ; 163(3): 819, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29273879

RESUMEN

Unfortunately, the concentration unit of plasmids was published incorrectly in the original publication of the article. The concentration unit, 'copies/ml' should be corrected to 'copies/µl'. This changes do not affect to the analytic sensitivity of the method because the detection limits of 50-100 copies/µL and 5-100 copies/µL using pUC57-SARS-pS2 (a template for SARS-CoV) and pGEM-MERS-S2 (a template for MERS-CoV), respectively, were as sensitive as other real-time PCR methods [1].

14.
Arch Virol ; 163(5): 1153-1162, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29368065

RESUMEN

Gene segments from avian H1N1 influenza A viruses have reassorted with other influenza viruses to generate pandemic strains over the past century. Nevertheless, little effort has been invested in understanding the characteristics of avian H1N1 influenza viruses. Here, we present the genome sequence and a molecular and virological characterization of an avian influenza A virus, A/wild bird/Korea/SK14/2014 (A/SK14, H1N1), isolated from migratory birds in South Korea during the winter season of 2014-2015. Full-genome sequencing and phylogenetic analysis revealed that the virus belongs to the Eurasian avian lineage. Although it retained avian-receptor binding preference, A/SK14 virus also exhibited detectable human-like receptor binding and was able to replicate in differentiated primary normal human bronchial epithelial cells. In animal models, A/SK14 virus was moderately pathogenic in mice, and virus was detected in nasal washes from inoculated guinea pigs, but not in direct-contact guinea pigs. Although A/SK14 showed moderate pathogenicity and no evidence of transmission in a mammalian model, our results suggest that the dual receptor specificity of A/SK14-like virus might allow for a more rapid adaptation to mammals, emphasizing the importance of further continuous surveillance and risk-assessment activities.


Asunto(s)
Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Animales Salvajes , Aves/virología , Bronquios/citología , Bronquios/virología , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados/patogenicidad , Receptores Virales/metabolismo , República de Corea , Acoplamiento Viral , Replicación Viral
15.
Arch Virol ; 163(3): 649-657, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29204739

RESUMEN

In Korea, H5-subtype highly pathogenic avian influenza (HPAI) has caused huge economic losses in poultry farms through outbreaks of H5N1 since 2003, H5N8 since 2013 and H5N6 since 2016. Although it was reported that long-distance migratory birds may play a major role in the global spread of avian influenza viruses (AIVs), transmission from such birds to poultry has not been confirmed. Intermediate hosts in the wild also may be a potential factor in viral transmission. Therefore, a total of 367 serum samples from wild animals were collected near major migratory bird habitats from 2011 to 2016 and tested by AIV-specific blocking ELISA and hemagglutination inhibition (HI) test. Two mammalian and eight avian species were seropositive according to the ELISA test. Among these, two mammalian (Hydropotes inermis and Prionailurus bengalensis) and three avian (Aegypius monachus, Cygnus cygnus, and Bubo bubo) species showed high HI titres (> 1,280) against one or two H5-subtype AIVs. As H. inermis (water deer), P. bengalensis (leopard cat), and B. bubo (Eurasian eagle owl) are indigenous animals in Korea, evidence of H5-subtype AIV in these animals implies that continuous monitoring of indigenous animals should be followed to understand interspecies transmission ecology of H5-subtype influenza viruses.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Animales , Animales Salvajes/virología , Aves/virología , Ciervos/virología , Monitoreo Epidemiológico , Felidae/virología , Pruebas de Inhibición de Hemaglutinación , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/inmunología , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/inmunología , Gripe Aviar/sangre , Gripe Aviar/inmunología , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Filogenia , República de Corea/epidemiología
16.
BMC Vet Res ; 14(1): 413, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577780

RESUMEN

BACKGROUND: Canine noroviruses (CaNoVs) are classified into genogroups GIV, GVI, and GVII and have been detected in fecal samples from dogs since their first appearance in a dog with enteritis in Italy in 2007. CaNoVs may be a public health concern because pet animals are an integral part of the family and could be a potential reservoir of zoonotic agents. Nonetheless, there was no previous information concerning the epidemiology of CaNoV in South Korea. In the present study, we aimed to detect CaNoV antigens and to investigate serological response against CaNoV in dogs. RESULTS: In total, 459 fecal samples and 427 sera were collected from small animal clinics and animal shelters housing free-roaming dogs in geographically distinct areas in South Korea. For the detection of CaNoV, RT-PCR was performed using target specific primers, and nucleotide sequences of CaNoV isolates were phylogenetically analyzed. Seroprevalence was performed by ELISA based on P domain protein. CaNoVs were detected in dog fecal samples (14/459, 3.1%) and were phylogenetically classified into the same cluster as previously reported genogroup GIV CaNoVs. Seroprevalence was performed, and 68 (15.9%) of 427 total dog serum samples tested positive for CaNoV IgG antibodies. CONCLUSION: This is the first study identifying CaNoV in the South Korean dog population.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Enfermedades de los Perros/epidemiología , Norovirus/fisiología , Animales , Anticuerpos Antivirales/sangre , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Perros , Ensayo de Inmunoadsorción Enzimática , Heces/virología , Norovirus/clasificación , Filogenia , República de Corea , Estudios Seroepidemiológicos
17.
Arch Virol ; 162(10): 3017-3024, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28664296

RESUMEN

Influenza A viruses must undergo adaptation to acquire virulence in new host species. In mouse models, host adaptation for virulence is generally performed through 5 to 20 lung-to-lung passages. However, highly pathogenic avian influenza viruses (e.g., H5N1 and H7N7 subtypes) have been observed to acquire virulence in mice after only a few in vivo passages. In this study, a low-pathogenic avian influenza H5N2 virus, A/Aquatic Bird/Korea/CN2/2009, which was a prevalent subtype in South Korea in 2009, was serially passaged in mice to evaluate its potential to become highly pathogenic. Unexpectedly, the virus became highly pathogenic in mice after a single lung-to-lung passage, resulting in 100% lethality with a mean death time (MDT) of 6.1 days postinfection (DPI). Moreover, the pathogenicity gradually increased after subsequent in vivo passages with an MDT of 5.2 and 4.2 DPI after the second and third passage, respectively. Our molecular analysis revealed that two amino acid changes in the polymerase complex (a glutamate-to-lysine substitution at position 627 of PB2 and a threonine-to-isoleucine substitution at position 97 of PA) were associated with the increased pathogenicity; the PB2 E627K mutation was responsible for the initial virulence conversion (0 to 100% lethality), while the PA T97I mutation acted as an accessory for the increased virulence.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Adaptación Fisiológica , Animales , Subtipo H5N2 del Virus de la Influenza A/genética , Ratones , Filogenia , Virulencia/genética
18.
Arch Virol ; 162(6): 1617-1623, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28220326

RESUMEN

Since severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) share similar characteristics with respect to clinical signs, etiology, and transmission, methods for a rapid and accurate differential diagnosis are important. Therefore, the aim of this study was to develop a duplex real-time reverse transcription (RT)-PCR method for the simultaneous detection of these viruses. Primers and probes that target the conserved spike S2 region of human SARS-CoV, MERS-CoV, and their related bat CoVs were designed. The results of real-time RT-PCR showed specific reactions for each virus with adequate detection limits of 50-100 copies/mL and 5-100 copies/mL using pUC57-SARS-pS2 (a template for SARS-CoV) and pGEM-MERS-S2 (a template for MERS-CoV), respectively. In addition, this real-time RT-PCR system was able to detect the target viruses SARS-like bat CoV and MERS-CoV in bat fecal samples and sputum of MERS patients, respectively. Therefore, this newly developed real-time RT-PCR method is expected to detect not only SARS-CoV and MERS-CoV in humans but also several bat CoVs that are closely related to these viruses in bats.


Asunto(s)
Coronaviridae/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Animales , Quirópteros/virología , Coronaviridae/genética , Infecciones por Coronavirus/virología , Diagnóstico Diferencial , Heces/virología , Humanos , Límite de Detección , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , ARN Viral/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Alineación de Secuencia , Síndrome Respiratorio Agudo Grave/virología , Esputo/virología
19.
Tumour Biol ; 37(9): 12193-12202, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27230679

RESUMEN

The prognosis of pancreatic cancer has not improved despite considerable and continuous effort. Dual-specificity phosphatase 28 (DUSP28) is highly expressed in human pancreatic cancers and exerts critical effects. However, knowledge of its function in pancreatic cancers is extremely limited. Here, we demonstrate the peculiar role of DUSP28 in pancreatic cancers. Analysis using the Gene Expression Omnibus public microarray database indicated higher DUSP28, MUC1, MUC4, MUC5B, MUC16 and MUC20 messenger RNA (mRNA) levels in pancreatic cancers compared with normal pancreas tissues. DUSP28 expression in human pancreatic cancer correlated positively with those of MUC1, MUC4, MUC5B, MUC16 and MUC20. In contrast, there were no significant correlations between DUSP28 and mucins in normal pancreas tissues. Decreased DUSP28 expression resulted in down-regulation of MUC5B and MUC16 at both the mRNA and protein levels; furthermore, transfection with small interfering RNA (siRNA) for MUC5B and MUC16 inhibited the migration and survival of AsPC-1 cells. In addition, transfection of siRNA for MUC5B and MUC16 resulted in a significant decrease in phosphorylation of FAK and ERK1/2 compared with transfection with scrambled-siRNA. These results collectively indicate unique links between DUSP28 and MUC5B/MUC16 and their roles in pancreatic cancer; moreover, they strongly support a rationale for targeting DUSP28 to inhibit development of malignant pancreatic cancer.


Asunto(s)
Antígeno Ca-125/genética , Movimiento Celular/genética , Fosfatasas de Especificidad Dual/genética , Regulación Neoplásica de la Expresión Génica , Mucina 5B/genética , Neoplasias Pancreáticas/genética , Western Blotting , Antígeno Ca-125/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Fosfatasas de Especificidad Dual/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mucina 5B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Vet Res ; 47(1): 115, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27846859

RESUMEN

Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids. Recently, we isolated an H3N8 EIV (A/equine/Kyonggi/SA1/2011) from a domestic horse in South Korea that exhibited symptoms of respiratory disease, and found that the EIV strain contained a naturally mutated NS gene segment encoding a truncated NS1 protein. In order to determine whether there was an association between the NS gene truncation and viral virulence, a reverse genetics system was applied to generate various NS gene recombinant viruses using the backbone of the H1N1 A/Puerto Rico/8/1934 (PR/8) virus. In a mouse model, the recombinant PR/8 virus containing the mutated NS gene of the Korean H3N8 EIV strain showed a dramatically reduced virulence: it induced no weight loss, no clinical signs and no histopathological lesions. However, the mice infected with the recombinant viruses with NS genes of PR/8 and H3N8 A/equine/2/Miami/1963 showed severe clinical signs including significant weight loss and 100% mortality. In addition, the levels of the pro-inflammatory cytokines; IL-6, CCL5, and IFN-γ, in the lungs of mice infected with the recombinant viruses expressing a full-length NS1 were significantly higher than those of mice infected with the virus with the NS gene from the Korean H3N8 EIV strain. In this study, our results suggest that the C-terminal moiety of NS1 contains a number of virulence determinants and might be a suitable target for the development of a vaccine candidate against equine influenza.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Proteínas no Estructurales Virales/genética , Células A549 , Animales , Western Blotting , Citocinas/metabolismo , Perros , Células HEK293 , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Humanos , Subtipo H3N8 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Recombinación Genética/genética , Proteínas no Estructurales Virales/inmunología , Ensayo de Placa Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA