Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8016): 387-391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839953

RESUMEN

Threatened species are by definition species that are in need of assistance. In the absence of suitable conservation interventions, they are likely to disappear soon1. There is limited understanding of how and where conservation interventions are applied globally, or how well they work2,3. Here, using information from the International Union for Conservation of Nature Red List and other global databases, we find that for species at risk from three of the biggest drivers of biodiversity loss-habitat loss, overexploitation for international trade and invasive species4-many appear to lack the appropriate types of conservation interventions. Indeed, although there has been substantial recent expansion of the protected area network, we still find that 91% of threatened species have insufficient representation of their habitats within protected areas. Conservation interventions are not implemented uniformly across different taxa and regions and, even when present, have infrequently led to substantial improvements in the status of species. For 58% of the world's threatened terrestrial species, we find conservation interventions to be notably insufficient or absent. We cannot determine whether such species are truly neglected, or whether efforts to recover them are not included in major conservation databases. If they are indeed neglected, the outlook for many of the world's threatened species is grim without more and better targeted action.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Internacionalidad , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Bases de Datos Factuales , Especies en Peligro de Extinción/estadística & datos numéricos , Extinción Biológica , Especies Introducidas/estadística & datos numéricos
2.
Nature ; 620(7975): 807-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612395

RESUMEN

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Clima Tropical , Naciones Unidas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Mamíferos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/tendencias
3.
Trends Genet ; 39(11): 816-829, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37648576

RESUMEN

Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Genética de Población , Ecosistema
4.
PLoS Biol ; 21(2): e3001991, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36854036

RESUMEN

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Asunto(s)
Biodiversidad , Especies en Peligro de Extinción , Animales , Filogenia , Evolución Biológica , Humanidades , Mamíferos
5.
Proc Natl Acad Sci U S A ; 120(20): e2220672120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37159475

RESUMEN

The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.


Asunto(s)
Biodiversidad , Evolución Biológica , Filogenia , Disentimientos y Disputas , Fósiles
8.
Proc Natl Acad Sci U S A ; 119(12): e2117297119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286193

RESUMEN

SignificanceUnderstanding the impacts of urbanization and the associated urban land expansion on species is vital for informed urban planning that minimizes biodiversity loss. Predicting habitat that will be lost to urban land expansion for over 30,000 species under three different future scenarios, we find that up to 855 species are directly threatened due to unmitigated urbanization. Our projections pinpoint rapidly urbanizing regions of sub-Saharan Africa, South America, Mesoamerica, and Southeast Asia where, without careful planning, urbanization is expected to cause particularly large biodiversity loss. Our findings highlight the urgent need for an increased focus on urban land in global conservation strategies and identify high-priority areas for this engagement.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Predicción , Urbanización
9.
PLoS Biol ; 19(8): e3001336, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383738

RESUMEN

Conserving and managing biodiversity in the face of ongoing global change requires sufficient evidence to assess status and trends of species distributions. Here, we propose novel indicators of biodiversity data coverage and sampling effectiveness and analyze national trajectories in closing spatiotemporal knowledge gaps for terrestrial vertebrates (1950 to 2019). Despite a rapid rise in data coverage, particularly in the last 2 decades, strong geographic and taxonomic biases persist. For some taxa and regions, a tremendous growth in records failed to directly translate into newfound knowledge due to a sharp decline in sampling effectiveness. However, we found that a nation's coverage was stronger for species for which it holds greater stewardship. As countries under the post-2020 Global Biodiversity Framework renew their commitments to an improved, rigorous biodiversity knowledge base, our findings highlight opportunities for international collaboration to close critical information gaps.


Asunto(s)
Distribución Animal , Biodiversidad , Ecología/normas , Ecología/tendencias , Animales , Artiodáctilos , Conservación de los Recursos Naturales , Ecología/métodos , Internacionalidad , Panthera
10.
PLoS Biol ; 19(11): e3001460, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780461

RESUMEN

A vast range of research applications in biodiversity sciences requires integrating primary species, genetic, or ecosystem data with other environmental data. This integration requires a consideration of the spatial and temporal scale appropriate for the data and processes in question. But a versatile and scale flexible environmental annotation of biodiversity data remains constrained by technical hurdles. Existing tools have streamlined the intersection of occurrence records with gridded environmental data but have remained limited in their ability to address a range of spatial and temporal grains, especially for large datasets. We present the Spatiotemporal Observation Annotation Tool (STOAT), a cloud-based toolbox for flexible biodiversity-environment annotations. STOAT is optimized for large biodiversity datasets and allows user-specified spatial and temporal resolution and buffering in support of environmental characterizations that account for the uncertainty and scale of data and of relevant processes. The tool offers these services for a growing set of near global, remotely sensed, or modeled environmental data, including Landsat, MODIS, EarthEnv, and CHELSA. STOAT includes a user-friendly, web-based dashboard that provides tools for annotation task management and result visualization, linked to Map of Life, and a dedicated R package (rstoat) for programmatic access. We demonstrate STOAT functionality with several examples that illustrate phenological variation and spatial and temporal scale dependence of environmental characteristics of birds at a continental scale. We expect STOAT to facilitate broader exploration and assessment of the scale dependence of observations and processes in ecology.


Asunto(s)
Biodiversidad , Nube Computacional , Animales , Aves/fisiología , Bases de Datos como Asunto , Comunicaciones por Satélite , Estaciones del Año , Análisis Espacio-Temporal , Especificidad de la Especie , Temperatura , Factores de Tiempo
11.
Nature ; 555(7695): 246-250, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29466335

RESUMEN

Mountain ranges harbour exceptionally high biodiversity, which is now under threat from rapid environmental change. However, despite decades of effort, the limited availability of data and analytical tools has prevented a robust and truly global characterization of elevational biodiversity gradients and their evolutionary origins. This has hampered a general understanding of the processes involved in the assembly and maintenance of montane communities. Here we show that a worldwide mid-elevation peak in bird richness is driven by wide-ranging species and disappears when we use a subsampling procedure that ensures even species representation in space and facilitates evolutionary interpretation. Instead, richness corrected for range size declines linearly with increasing elevation. We find that the more depauperate assemblages at higher elevations are characterized by higher rates of diversification across all mountain regions, rejecting the idea that lower recent diversification rates are the general cause of less diverse biota. Across all elevations, assemblages on mountains with high rates of past temperature change exhibit more rapid diversification, highlighting the importance of climatic fluctuations in driving the evolutionary dynamics of mountain biodiversity. While different geomorphological and climatic attributes of mountain regions have been pivotal in determining the remarkable richness gradients observed today, our results underscore the role of ongoing and often very recent diversification processes in maintaining the unique and highly adapted biodiversity of higher elevations.


Asunto(s)
Altitud , Biodiversidad , Aves/clasificación , Mapeo Geográfico , Animales , Aves/genética , Especificidad de la Especie
12.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599095

RESUMEN

Far from a uniform band, the biodiversity found across Earth's tropical moist forests varies widely between the high diversity of the Neotropics and Indomalaya and the relatively lower diversity of the Afrotropics. Explanations for this variation across different regions, the "pantropical diversity disparity" (PDD), remain contentious, due to difficulty teasing apart the effects of contemporary climate and paleoenvironmental history. Here, we assess the ubiquity of the PDD in over 150,000 species of terrestrial plants and vertebrates and investigate the relationship between the present-day climate and patterns of species richness. We then investigate the consequences of paleoenvironmental dynamics on the emergence of biodiversity gradients using a spatially explicit model of diversification coupled with paleoenvironmental and plate tectonic reconstructions. Contemporary climate is insufficient in explaining the PDD; instead, a simple model of diversification and temperature niche evolution coupled with paleoaridity constraints is successful in reproducing the variation in species richness and phylogenetic diversity seen repeatedly among plant and animal taxa, suggesting a prevalent role of paleoenvironmental dynamics in combination with niche conservatism. The model indicates that high biodiversity in Neotropical and Indomalayan moist forests is driven by complex macroevolutionary dynamics associated with mountain uplift. In contrast, lower diversity in Afrotropical forests is associated with lower speciation rates and higher extinction rates driven by sustained aridification over the Cenozoic. Our analyses provide a mechanistic understanding of the emergence of uneven diversity in tropical moist forests across 110 Ma of Earth's history, highlighting the importance of deep-time paleoenvironmental legacies in determining biodiversity patterns.


Asunto(s)
Biodiversidad , Bosques , Clima Tropical , Animales , Evolución Biológica , Planeta Tierra
13.
Nature ; 546(7656): 141-144, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28538726

RESUMEN

Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity-species. Here we broaden the focus and provide an evaluation of how much of the world's species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Internacionalidad , Animales , Aves/clasificación , Política Ambiental , Mamíferos/clasificación , Filogenia
14.
Proc Biol Sci ; 289(1975): 20220091, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35611527

RESUMEN

How and why lineages evolve along with niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a robust empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of abiotic and biotic factors remains poorly understood. Here, we characterize species' two-dimensional temperature and precipitation niche space occupied (i.e. species niche envelope) as complex geometries and assess their evolution across all Aves using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the Cretaceous-Palaeogene (K-Pg) boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with the colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings highlight the growing ecological and conservation insights arising from the model-based integration of comprehensive environmental and phylogenetic information.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Aves , Filogenia , Temperatura
15.
PLoS Biol ; 17(12): e3000494, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31800571

RESUMEN

Big, time-scaled phylogenies are fundamental to connecting evolutionary processes to modern biodiversity patterns. Yet inferring reliable phylogenetic trees for thousands of species involves numerous trade-offs that have limited their utility to comparative biologists. To establish a robust evolutionary timescale for all approximately 6,000 living species of mammals, we developed credible sets of trees that capture root-to-tip uncertainty in topology and divergence times. Our "backbone-and-patch" approach to tree building applies a newly assembled 31-gene supermatrix to two levels of Bayesian inference: (1) backbone relationships and ages among major lineages, using fossil node or tip dating, and (2) species-level "patch" phylogenies with nonoverlapping in-groups that each correspond to one representative lineage in the backbone. Species unsampled for DNA are either excluded ("DNA-only" trees) or imputed within taxonomic constraints using branch lengths drawn from local birth-death models ("completed" trees). Joining time-scaled patches to backbones results in species-level trees of extant Mammalia with all branches estimated under the same modeling framework, thereby facilitating rate comparisons among lineages as disparate as marsupials and placentals. We compare our phylogenetic trees to previous estimates of mammal-wide phylogeny and divergence times, finding that (1) node ages are broadly concordant among studies, and (2) recent (tip-level) rates of speciation are estimated more accurately in our study than in previous "supertree" approaches, in which unresolved nodes led to branch-length artifacts. Credible sets of mammalian phylogenetic history are now available for download at http://vertlife.org/phylosubsets, enabling investigations of long-standing questions in comparative biology.


Asunto(s)
Mamíferos/clasificación , Animales , Teorema de Bayes , Biodiversidad , Evolución Biológica , Simulación por Computador , Evolución Molecular , Fósiles , Filogenia , Programas Informáticos , Especificidad de la Especie
16.
J Anim Ecol ; 91(7): 1334-1344, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388473

RESUMEN

Individual decisions regarding how, why and when organisms interact with one another and with their environment scale up to shape patterns and processes in communities. Recent evidence has firmly established the prevalence of intraspecific variation in nature and its relevance in community ecology, yet challenges associated with collecting data on large numbers of individual conspecifics and heterospecifics have hampered integration of individual variation into community ecology. Nevertheless, recent technological and statistical advances in GPS-tracking, remote sensing and behavioural ecology offer a toolbox for integrating intraspecific variation into community processes. More than simply describing where organisms go, movement data provide unique information about interactions and environmental associations from which a true individual-to-community framework can be built. By linking the movement paths of both conspecifics and heterospecifics with environmental data, ecologists can now simultaneously quantify intraspecific and interspecific variation regarding the Eltonian (biotic interactions) and Grinnellian (environmental conditions) factors underpinning community assemblage and dynamics, yet substantial logistical and analytical challenges must be addressed for these approaches to realize their full potential. Across communities, empirical integration of Eltonian and Grinnellian factors can support conservation applications and reveal metacommunity dynamics via tracking-based dispersal data. As the logistical and analytical challenges associated with multi-species tracking are surmounted, we envision a future where individual movements and their ecological and environmental signatures will bring resolution to many enduring issues in community ecology.


Asunto(s)
Ecología , Movimiento , Animales , Ecosistema , Telemetría
17.
Ecol Lett ; 24(2): 196-207, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33124188

RESUMEN

Mountain systems are exceptionally species rich, yet the associated elevational gradients in functional and phylogenetic diversity and their consistency across latitude remain little understood. Here, we document how avian functional and phylogenetic diversity and structure vary along all major elevational gradients worldwide and uncover strong latitudinal differences. Assemblages in warm tropical lowlands and cold temperate highlands are marked by high functional overdispersion and distinctiveness, whereas tropical highlands and temperate lowlands appear strongly functionally clustered and redundant. We additionally find strong geographic variation in the interplay of phylogenetic and functional structure, with strongest deviations between the two in temperate highlands. This latitudinal and elevational variation in assemblage functional structure is underpinned by nuanced shifts in the position, shape and composition of multivariate trait space. We find that, independent of latitude, high-elevation assemblages emerge as exceptionally susceptible to functional change.


Asunto(s)
Biodiversidad , Aves , Animales , Filogenia
18.
Ecol Lett ; 24(7): 1387-1399, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33908685

RESUMEN

The colours of fleshy fruits play a critical role in plant dispersal by advertising ripe fruits to consumers. Fruit colours have long been classified into syndromes attributed to selection by animal dispersers, despite weak evidence for this hypothesis. Here, we test the relative importance of biotic (bird and mammal frugivory) and abiotic (wet season temperatures, growing season length and UV-B radiation) factors in determining fruit colour syndrome in 3163 species of fleshy-fruited plants. We find that both dispersers and environment are important, and they interact. In warm areas, contrastive, bird-associated fruit colours increase with relative bird frugivore prevalence, whereas in cold places these colours dominate even where mammalian dispersers are prevalent. We present near-global maps of predicted fruit colour syndrome based on our species-level model and our newly developed characterisations of relative importance of bird and mammal frugivores.


Asunto(s)
Frutas , Dispersión de Semillas , Animales , Aves , Color , Conducta Alimentaria , Síndrome
19.
Ecol Lett ; 24(11): 2464-2476, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34510687

RESUMEN

The Tree of Life will be irrevocably reshaped as anthropogenic extinctions continue to unfold. Theory suggests that lineage evolutionary dynamics, such as age since origination, historical extinction filters and speciation rates, have influenced ancient extinction patterns - but whether these factors also contribute to modern extinction risk is largely unknown. We examine evolutionary legacies in contemporary extinction risk for over 4000 genera, representing ~30,000 species, from the major tetrapod groups: amphibians, birds, turtles and crocodiles, squamate reptiles and mammals. We find consistent support for the hypothesis that extinction risk is elevated in lineages with higher recent speciation rates. We subsequently test, and find modest support for, a primary mechanism driving this pattern: that rapidly diversifying clades predominantly comprise range-restricted, and extinction-prone, species. These evolutionary patterns in current imperilment may have important consequences for how we manage the erosion of biological diversity across the Tree of Life.


Asunto(s)
Biodiversidad , Evolución Biológica , Anfibios , Animales , Extinción Biológica , Especiación Genética , Filogenia , Reptiles
20.
BMC Evol Biol ; 20(1): 81, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650718

RESUMEN

BACKGROUND: The origin of turtles and crocodiles and their easily recognized body forms dates to the Triassic and Jurassic. Despite their long-term success, extant species diversity is low, and endangerment is extremely high compared to other terrestrial vertebrate groups, with ~ 65% of ~ 25 crocodilian and ~ 360 turtle species now threatened by exploitation and habitat loss. Here, we combine available molecular and morphological evidence with statistical and machine learning algorithms to present a phylogenetically informed, comprehensive assessment of diversification, threat status, and evolutionary distinctiveness of all extant species. RESULTS: In contrast to other terrestrial vertebrates and their own diversity in the fossil record, the recent extant lineages of turtles and crocodilians have not experienced any global mass extinctions or lineage-wide shifts in diversification rate or body-size evolution over time. We predict threat statuses for 114 as-yet unassessed or data-deficient species and identify a concentration of threatened turtles and crocodilians in South and Southeast Asia, western Africa, and the eastern Amazon. We find that unlike other terrestrial vertebrate groups, extinction risk increases with evolutionary distinctiveness: a disproportionate amount of phylogenetic diversity is concentrated in evolutionarily isolated, at-risk taxa, particularly those with small geographic ranges. Our findings highlight the important role of geographic determinants of extinction risk, particularly those resulting from anthropogenic habitat-disturbance, which affect species across body sizes and ecologies. CONCLUSIONS: Extant turtles and crocodilians maintain unique, conserved morphologies which make them globally recognizable. Many species are threatened due to exploitation and global change. We use taxonomically complete, dated molecular phylogenies and various approaches to produce a comprehensive assessment of threat status and evolutionary distinctiveness of both groups. Neither group exhibits significant overall shifts in diversification rate or body-size evolution, or any signature of global mass extinctions in recent, extant lineages. However, the most evolutionarily distinct species tend to be the most threatened, and species richness and extinction risk are centered in areas of high anthropogenic disturbance, particularly South and Southeast Asia. Range size is the strongest predictor of threat, and a disproportionate amount of evolutionary diversity is at risk of imminent extinction.


Asunto(s)
Caimanes y Cocodrilos/clasificación , Biodiversidad , Extinción Biológica , Geografía , Filogenia , Tortugas/clasificación , África Occidental , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA