Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(45): 11980-11985, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078343

RESUMEN

Most of the enteric nervous system derives from the "vagal" neural crest, lying at the level of somites 1-7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the "vagal crest" subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3-7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated.


Asunto(s)
Sistema Nervioso Entérico/citología , Ganglios Simpáticos/citología , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Neurregulina-1/genética , Receptor ErbB-3/genética , Células de Schwann/citología , Animales , Embrión de Pollo , Tracto Gastrointestinal/inervación , Enfermedad de Hirschsprung/genética , Ratones , Neurregulina-1/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Receptor ErbB-3/metabolismo , Nervio Vago/citología
2.
J Tissue Eng ; 11: 2041731420954712, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178409

RESUMEN

Using microspherical scaffolds as building blocks to repair bone defects of specific size and shape has been proposed as a tissue engineering strategy. Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their ability to support osteogenic and vascular responses of human mesenchymal stem cells (hMSCs). Together with standard culture techniques, cell-material interactions were studied using a novel perfusion microfluidic bioreactor that enabled cell culture on microspheres, along with automated processing and screening of culture variables. While titanium doping was found to support hMSCs expansion and differentiation, as well as endothelial cell-derived vessel formation, additional doping with cobalt did not improve the functionality of the microspheres. Furthermore, the microfluidic bioreactor enabled screening of culture parameters for cell culture on microspheres that could be potentially translated to a scaled-up system for tissue-engineered bone manufacturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA