Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Brain Mapp ; 44(15): 5153-5166, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37605827

RESUMEN

BACKGROUND: Spatial patterns of brain functional connectivity can vary substantially at the individual level. Applying cortical surface-based approaches with individualized rather than group templates may accelerate the discovery of biological markers related to psychiatric disorders. We investigated cortico-subcortical networks from multi-cohort data in people with schizophrenia spectrum disorders (SSDs) and healthy controls (HC) using individualized connectivity profiles. METHODS: We utilized resting-state and anatomical MRI data from n = 406 participants (n = 203 SSD, n = 203 HC) from four cohorts. Functional timeseries were extracted from previously defined intrinsic network subregions of the striatum, thalamus, and cerebellum as well as 80 cortical regions of interest, representing six intrinsic networks using (1) volume-based approaches, (2) a surface-based group atlas approaches, and (3) Personalized Intrinsic Network Topography (PINT). RESULTS: The correlations between all cortical networks and the expected subregions of the striatum, cerebellum, and thalamus were increased using a surface-based approach (Cohen's D volume vs. surface 0.27-1.00, all p < 10-6 ) and further increased after PINT (Cohen's D surface vs. PINT 0.18-0.96, all p < 10-4 ). In SSD versus HC comparisons, we observed robust patterns of dysconnectivity that were strengthened using a surface-based approach and PINT (Number of differing pairwise-correlations: volume: 404, surface: 570, PINT: 628, FDR corrected). CONCLUSION: Surface-based and individualized approaches can more sensitively delineate cortical network dysconnectivity differences in people with SSDs. These robust patterns of dysconnectivity were visibly organized in accordance with the cortical hierarchy, as predicted by computational models.


Asunto(s)
Corteza Cerebral , Neuroimagen Funcional , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Masculino , Femenino , Adulto , Corteza Cerebral/diagnóstico por imagen , Adolescente , Adulto Joven , Imagen por Resonancia Magnética , Descanso , Cuerpo Estriado/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Cerebelo/diagnóstico por imagen
2.
Int Psychogeriatr ; 35(12): 717-723, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36803400

RESUMEN

OBJECTIVE: Frailty and late-life depression (LLD) often coexist and share several structural brain changes. We aimed to study the joint effect LLD and frailty have on brain structure. DESIGN: Cross-sectional study. SETTING: Academic Health Center. PARTICIPANTS: Thirty-one participants (14 LLD+Frail and 17 Never-depressed+Robust). MEASUREMENT: LLD was diagnosed by a geriatric psychiatrist according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition for single episode or recurrent major depressive disorder without psychotic features. Frailty was assessed using the FRAIL scale (0-5), classifying subjects as robust (0), prefrail (1-2), and frail (3-5). Participants underwent T1-weighted magnetic resonance imaging in which covariance analysis of subcortical volumes and vertex-wise analysis of cortical thickness values were performed to access changes in grey matter. Participants also underwent diffusion tensor imaging in which tract-based spatial statistics was used with voxel-wise statistical analysis on fractional anisotropy and mean diffusion values to assess changes in white matter (WM). RESULTS: We found a significant difference in mean diffusion values (48,225 voxels; peak voxel: pFWER=0.005, MINI coord. (X,Y,Z) = -26,-11,27) between the LLD-Frail group and comparison group. The corresponding effect size (f=0.808) was large. CONCLUSION: We showed the LLD+Frailty group is associated with significant microstructural changes within WM tracts compared to Never-depressed+Robust individuals. Our findings indicate the possibility of a heightened neuroinflammatory burden as a potential mechanism underlying the co-occurrence of both conditions and the possibility of a depression-frailty phenotype in older adults.


Asunto(s)
Trastorno Depresivo Mayor , Fragilidad , Humanos , Anciano , Imagen de Difusión Tensora , Depresión/diagnóstico por imagen , Proyectos Piloto , Fragilidad/diagnóstico por imagen , Estudios Transversales , Neuroimagen
3.
Cereb Cortex ; 30(10): 5420-5430, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32483605

RESUMEN

Several brain disorders exhibit sex differences in onset, presentation, and prevalence. Increased understanding of the neurobiology of sex-based differences in variability across the lifespan can provide insight into both disease vulnerability and resilience. In n = 3069 participants, from 8 to 95 years of age, we found widespread greater variability in males compared with females in cortical surface area and global and subcortical volumes for discrete brain regions. In contrast, variance in cortical thickness was similar for males and females. These findings were supported by multivariate analysis accounting for structural covariance, and present and stable across the lifespan. Additionally, we examined variability among brain regions by sex. We found significant age-by-sex interactions across neuroimaging metrics, whereby in very early life males had reduced among-region variability compared with females, while in very late life this was reversed. Overall, our findings of greater regional variability, but less among-region variability in males in early life may aid our understanding of sex-based risk for neurodevelopmental disorders. In contrast, our findings in late life may provide a potential sex-based risk mechanism for dementia.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Longevidad/fisiología , Caracteres Sexuales , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Adulto Joven
4.
J Vis ; 18(1): 6, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29327042

RESUMEN

Transsaccadic memory is a process by which remembered object information is updated across a saccade. To date, studies on transsaccadic memory have used simple stimuli-that is, a single dot or feature of an object. It remains unknown how transsaccadic memory occurs for more realistic, complex objects with multiple features. An object's location is a central feature for transsaccadic updating, as it is spatially variant, but other features such as size are spatially invariant. How these spatially variant and invariant features of an object are remembered and updated across saccades is not well understood. Here we tested how well 14 participants remembered either three different features together (location, orientation, and size) or a single feature at a time of a bar either while fixating either with or without an intervening saccade. We found that the intervening saccade influenced memory of all three features, with consistent biases of the remembered location, orientation, and size that were dependent on the direction of the saccade. These biases were similar whether participants remembered either a single feature or multiple features and were not observed with increased memory load (single vs. multiple features during fixation trials), confirming that these effects were specific to the saccade updating mechanisms. We conclude that multiple features of an object are updated together across eye movements, supporting the notion that spatially invariant features of an object are bound to their location in memory.


Asunto(s)
Memoria/fisiología , Reconocimiento Visual de Modelos/fisiología , Movimientos Sacádicos/fisiología , Adulto , Movimientos Oculares/fisiología , Femenino , Fijación Ocular/fisiología , Humanos , Masculino , Recuerdo Mental , Orientación , Orientación Espacial , Estimulación Luminosa , Adulto Joven
5.
bioRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38559269

RESUMEN

BACKGROUND: Transcranial magnetic stimulation (TMS) treatment response is influenced by individual variability in brain structure and function. Sophisticated, user-friendly approaches, incorporating both established functional magnetic resonance imaging (fMRI) and TMS simulation tools, to identify TMS targets are needed. OBJECTIVE: The current study presents the development and validation of the Bayesian Optimization of Neuro-Stimulation (BOONStim) pipeline. METHODS: BOONStim uses Bayesian optimization for individualized TMS targeting, automating interoperability between surface-based fMRI analytic tools and TMS electric field modeling. Bayesian optimization performance was evaluated in a sample dataset (N=10) using standard circular and functional connectivity-defined targets, and compared to grid optimization. RESULTS: Bayesian optimization converged to similar levels of total electric field stimulation across targets in under 30 iterations, converging within a 5% error of the maxima detected by grid optimization, and requiring less time. CONCLUSIONS: BOONStim is a scalable and configurable user-friendly pipeline for individualized TMS targeting with quick turnaround.

6.
Brain Stimul ; 16(4): 1165-1172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37543171

RESUMEN

INTRODUCTION: Repetitive transcranial magnetic stimulation (rTMS) to the dorsolateral prefrontal cortex (DLPFC) is effective in alleviating treatment-resistant depression (TRD). It has been proposed that regions within the left DLPFC that are anti-correlated with the right subgenual anterior cingulate cortex (sgACC) may represent optimal individualized target sites for high-frequency left rTMS (HFL). OBJECTIVE/HYPOTHESIS: This study aimed to explore the effects of low-frequency right rTMS (LFR) on left sgACC connectivity during concurrent TMS-fMRI. METHODS: 34 TRD patients underwent an imaging session that included both a resting-state fMRI run (rs-fMRI0) and a run during which LFR was applied to the right DLPFC (TMS-fMRI). Participants subsequently completed four weeks of LFR treatment. The left sgACC functional connectivity was compared between the rs-fMRI0 run and TMS-fMRI run. Personalized e-fields and a region-of-interest approach were used to calculate overlap of left sgACC functional connectivity at the TMS target and to assess for a relationship with treatment effects. RESULTS: TMS-fMRI increased left sgACC functional connectivity to parietal regions within the ventral attention network; differences were not significantly associated with clinical improvements. Personalized e-fields were not significant in predicting treatment outcomes (p = 0.18). CONCLUSION: This was the first study to examine left sgACC anti-correlation with the right DLPFC during an LFR rTMS protocol. In contrast to studies that targeted the left DLPFC, we did not find that higher anti-correlation was associated with clinical outcomes. Our results suggest that the antidepressant mechanism of action of LFR to the right DLPFC may be different than for HFL.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Corteza Prefrontal/fisiología , Giro del Cíngulo/diagnóstico por imagen , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA