Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO J ; 38(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31061173

RESUMEN

Communication and material transfer between membranes and organelles take place at membrane contact sites (MCSs). MCSs between the ER and PM, the ER/PM junctions, are the sites where the ER Ca2+ sensor STIM1 and the PM Ca2+ influx channel Orai1 cluster. MCSs are formed by tether proteins that bridge the opposing membranes, but the identity and role of these tethers in receptor-evoked Ca2+ signaling is not well understood. Here, we identified Anoctamin 8 (ANO8) as a key tether in the formation of the ER/PM junctions that is essential for STIM1-STIM1 interaction and STIM1-Orai1 interaction and channel activation at a ER/PM PI(4,5)P2-rich compartment. Moreover, ANO8 assembles all core Ca2+ signaling proteins: Orai1, PMCA, STIM1, IP3 receptors, and SERCA2 at the ER/PM junctions to mediate a novel form of Orai1 channel inactivation by markedly facilitating SERCA2-mediated Ca2+ influx into the ER. This controls the efficiency of receptor-stimulated Ca2+ signaling, Ca2+ oscillations, and duration of Orai1 activity to prevent Ca2+ toxicity. These findings reveal the central role of MCSs in determining efficiency and fidelity of cell signaling.


Asunto(s)
Anoctaminas/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Complejos Multiproteicos/metabolismo , Anoctaminas/fisiología , Canales de Calcio/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Unión Proteica , Multimerización de Proteína/fisiología , Molécula de Interacción Estromal 1/metabolismo
2.
EMBO Rep ; 18(11): 1893-1904, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29030479

RESUMEN

Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Sistemas de Mensajero Secundario , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplásmico/ultraestructura , Células Eucariotas/ultraestructura , Expresión Génica , Humanos , Membranas Intracelulares/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte Iónico , Metabolismo de los Lípidos , Mitocondrias/ultraestructura
3.
EMBO J ; 33(5): 501-11, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24502975

RESUMEN

Lysosomal Ca(2+) homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca(2+) signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg(2+) and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg(2+) specifically inhibited TPC2 outward current, whereas lysosomal Mg(2+) partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg(2+), TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca(2+) release in intact cells is regulated by Mg(2+), PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca(2+) signaling and link this pathway to Mg(2+) homeostasis and MAP kinases, pointing to roles for lysosomal Ca(2+) in cell growth, inflammation and cancer.


Asunto(s)
Canales de Calcio/metabolismo , Regulación Enzimológica de la Expresión Génica , MAP Quinasa Quinasa 4/metabolismo , Magnesio/metabolismo , NADP/análogos & derivados , Fosfatidilinositoles/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Homeostasis , NADP/metabolismo
4.
EMBO Rep ; 17(2): 266-78, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26682800

RESUMEN

Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.


Asunto(s)
Exocitosis , Lisosomas/metabolismo , Mucolipidosis/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Vesículas Secretoras/metabolismo , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores , Ácido Glutámico/metabolismo , Ratones , Potenciales Postsinápticos Miniatura , Mucolipidosis/genética , Neuronas/metabolismo , Neuronas/fisiología , Enfermedad de Niemann-Pick Tipo C/genética , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
5.
Adv Exp Med Biol ; 993: 139-157, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900913

RESUMEN

Ca2+ influx by plasma membrane Ca2+ channels is the crucial component of the receptor-evoked Ca2+ signal. The two main Ca2+ influx channels of non-excitable cells are the Orai and TRPC families of Ca2+ channels. These channels are activated in response to cell stimulation and Ca2+ release from the endoplasmic reticulum (ER). The protein that conveys the Ca2+ content of the ER to the plasma membrane is the ER Ca2+ sensor STIM1. STIM1 activates the Orai channels and is obligatory for channel opening. TRPC channels can function in two modes, as STIM1-dependent and STIM1-independent. When activated by STIM1, both channel types function at the ER/PM (plasma membrane) junctions. This chapter describes the properties and regulation of the channels by STIM1, with emphasis how and when TRPC channels function as STIM1-dependent and STIM1-independent modes and their unique Ca2+-dependent physiological functions that are not shared with the Orai channels.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo
6.
Handb Exp Pharmacol ; 223: 1035-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24961979

RESUMEN

Ca(2+) signaling entails receptor-stimulated Ca(2+) release from the ER stores that serves as a signal to activate Ca(2+) influx channels present at the plasma membrane, the store-operated Ca(2+) channels (SOCs). The two known SOCs are the Orai and TRPC channels. The SOC-dependent Ca(2+) influx mediates and sustains virtually all Ca(2+)-dependent regulatory functions. The signal that transmits the Ca(2+) content of the ER stores to the plasma membrane is the ER resident, Ca(2+)-binding protein STIM1. STIM1 is a multidomain protein that clusters and dimerizes in response to Ca(2+) store depletion leading to activation of Orai and TRPC channels. Activation of the Orais by STIM1 is obligatory for their function as SOCs, while TRPC channels can function as both STIM1-dependent and STIM1-independent channels. Here we discuss the different mechanisms by which STIM1 activates the Orai and TRPC channels, the emerging specific and non-overlapping physiological functions of Ca(2+) influx mediated by the two channel types, and argue that the TRPC channels should be the preferred therapeutic target to control the toxic effect of excess Ca(2+) influx.


Asunto(s)
Canales de Calcio/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Calcio/metabolismo , Humanos , Proteína ORAI1 , Molécula de Interacción Estromal 1
7.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557489

RESUMEN

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Asunto(s)
Canales de Calcio , Calcio , Ratones , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Páncreas/metabolismo , Exocitosis/fisiología , Vesículas Secretoras/genética
8.
J Physiol ; 590(1): 119-29, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22025664

RESUMEN

Acetylcholine receptor-channels (AChRs) mediate fast synaptic transmission between nerve and muscle. In order to better-understand the mechanism by which this protein assembles and isomerizes between closed- and open-channel conformations we measured changes in the diliganded gating equilibrium constant (E(2)) consequent to mutations of residues at the C-terminus of loop 9 (L9) in the α and ε subunits of mouse neuromuscular AChRs. These amino acids are close to two interesting interfaces, between the extracellular and transmembrane domain within a subunit (E­T interface) and between primary and complementary subunits (P­C interface). Most α subunit mutations modestly decreased E(2) (mainly by slowing the channel-opening rate constant) and sometimes produced AChRs that had heterogeneous gating kinetic properties. Mutations in the ε subunit had a larger effect and could either increase or decrease E(2), but did not induce kinetic heterogeneity. There are broad-but-weak energetic interactions between αL9 residues and others at the αE­T interface, as well as between the εL9 residue and others at the P­C interface (in particular, the M2­M3 linker). These interactions serve, in part, to maintain the structural integrity of the AChR assembly at the E­T interface. Overall, the energy changes of L9 residues are significant but smaller than in other regions of the protein.


Asunto(s)
Acetilcolina/genética , Acetilcolina/metabolismo , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Animales , Sitios de Unión , Línea Celular Transformada , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Células HEK293 , Humanos , Cinética , Ratones , Conformación Molecular , Músculos/metabolismo , Músculos/fisiología , Mutación Puntual , Estructura Terciaria de Proteína , Subunidades de Proteína
9.
J Biol Chem ; 286(26): 22934-42, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540176

RESUMEN

NAADP is a potent second messenger that mobilizes Ca(2+) from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca(2+) release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca(2+)-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca(2+) influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca(2+) signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca(2+) signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca(2+) oscillations in pancreatic acinar cells were identical in wild-type and TRPML1(-/-) cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , NADP/análogos & derivados , Canales Catiónicos TRPM/metabolismo , Sustitución de Aminoácidos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Endosomas/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/genética , Mutación Missense , NADP/genética , NADP/metabolismo , Páncreas Exocrino/metabolismo , Canales Catiónicos TRPM/genética , Canales de Potencial de Receptor Transitorio
10.
J Neurosci ; 30(15): 5136-48, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392936

RESUMEN

Cholecystokinin (CCK), a neuropeptide originally discovered in the gastrointestinal tract, is abundantly distributed in the mammalian brains including the hippocampus. Whereas CCK has been shown to increase glutamate concentration in the perfusate of hippocampal slices and in purified rat hippocampal synaptosomes, the cellular and molecular mechanisms whereby CCK modulates glutamatergic function remain unexplored. Here, we examined the effects of CCK on glutamatergic transmission in the hippocampus using whole-cell recordings from hippocampal slices. Application of CCK increased AMPA receptor-mediated EPSCs at perforant path-dentate gyrus granule cell, CA3-CA3 and Schaffer collateral-CA1 synapses without effects at mossy fiber-CA3 synapses. CCK-induced increases in AMPA EPSCs were mediated by CCK-2 receptors and were not modulated developmentally and transcriptionally. CCK reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that CCK facilitates presynaptic glutamate release. CCK increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. CCK-mediated increases in glutamate release required the functions of phospholipase C, intracellular Ca(2+) release and protein kinase Cgamma. CCK released endogenously from hippocampal interneurons facilitated glutamatergic transmission. Our results provide a cellular and molecular mechanism to explain the roles of CCK in the brain.


Asunto(s)
Colecistoquinina/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Animales , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/crecimiento & desarrollo , Técnicas In Vitro , Espacio Intracelular/fisiología , Canales de Potasio/metabolismo , Terminales Presinápticos/fisiología , Probabilidad , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Colecistoquinina B/metabolismo , Receptores AMPA/metabolismo , Sinapsis/fisiología , Fosfolipasas de Tipo C/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
Sci Rep ; 11(1): 8313, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859333

RESUMEN

The cation channel TRPML1 is an important regulator of lysosomal function and autophagy. Loss of TRPML1 is associated with neurodegeneration and lysosomal storage disease, while temporary inhibition of this ion channel has been proposed to be beneficial in cancer therapy. Currently available TRPML1 channel inhibitors are not TRPML isoform selective and block at least two of the three human isoforms. We have now identified the first highly potent and isoform-selective TRPML1 antagonist, the steroid 17ß-estradiol methyl ether (EDME). Two analogs of EDME, PRU-10 and PRU-12, characterized by their reduced activity at the estrogen receptor, have been identified through systematic chemical modification of the lead structure. EDME and its analogs, besides being promising new small molecule tool compounds for the investigation of TRPML1, selectively affect key features of TRPML1 function: autophagy induction and transcription factor EB (TFEB) translocation. In addition, they act as inhibitors of triple-negative breast cancer cell migration and invasion.


Asunto(s)
Autofagia/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Cultivadas , Femenino , Humanos , Invasividad Neoplásica , Neoplasias de la Mama Triple Negativas/patología
12.
Sci Adv ; 7(40): eabj2485, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597140

RESUMEN

Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and Salmonella-induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity. GABARAP directly binds to a previously unidentified LC3-interacting motif (LIR) in the FLCN/FNIP tumor suppressor complex and mediates sequestration to GABARAP-conjugated membrane compartments. This disrupts FLCN/FNIP GAP function toward RagC/D, resulting in impaired substrate-specific mTOR-dependent phosphorylation of TFEB. Thus, the GABARAP-FLCN/FNIP-TFEB axis serves as a molecular sensor that coordinates lysosomal homeostasis with perturbations and cargo flux within the autophagy-lysosomal network.

13.
Biophys J ; 98(9): 1840-6, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20441747

RESUMEN

The neuromuscular acetylcholine receptor (AChR) is an allosteric protein that alternatively adopts inactive versus active conformations (R<-->R). The R shape has a higher agonist affinity and ionic conductance than R. To understand how agonists trigger this gating isomerization, we examined single-channel currents from adult mouse muscle AChRs that isomerize normally without agonists but have only a single site able to use agonist binding energy to motivate gating. We estimated the monoliganded gating equilibrium constant E(1) and the energy change associated with the R versus R change in affinity for agonists. AChRs with only one operational binding site gave rise to a single population of currents, indicating that the two transmitter binding sites have approximately the same affinity for the transmitter ACh. The results indicated that E(1) approximately 4.3 x 10(-3) with ACh, and approximately 1.7 x 10(-4) with the partial-agonist choline. From these values and the diliganded gating equilibrium constants, we estimate that the unliganded AChR gating constant is E(0) approximately 6.5 x 10(-7). Gating changes the stability of the ligand-protein complex by approximately 5.2 kcal/mol for ACh and approximately 3.3 kcal/mol for choline.


Asunto(s)
Agonistas Colinérgicos/farmacología , Canales Iónicos/agonistas , Canales Iónicos/metabolismo , Receptores Colinérgicos/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacología , Animales , Línea Celular , Colina/metabolismo , Colina/farmacología , Agonistas Colinérgicos/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/química , Canales Iónicos/genética , Ligandos , Ratones , Mutación , Receptores Colinérgicos/química , Receptores Colinérgicos/genética
14.
Biophys J ; 96(10): 4075-84, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19450479

RESUMEN

We studied single-channel currents from neuromuscular acetylcholine receptor-channels with mutations in the pore-lining, M2 helix of the epsilon-subunit. Three parameters were quantified: 1), the diliganded gating equilibrium constant (E(2)), which reflects the energy difference between C(losed) and O(pen) conformations; 2), the correlation between the opening rate constant and E(2) on a log-log scale (Phi), which illuminates the energy character of the residue (C- versus O-like) within the C<-->O isomerization process; and 3), the open-channel current amplitude (i(0)), which reports whether a mutation alters the energetics of ion permeation. The largest E(2) changes were observed in the cytoplasmic half of epsilonM2 (5', 9', 12', 13', and 16'), with smaller changes apparent for residues > or =17'. Phi was approximately 0.54 for most epsilonM2 residues, but was approximately 0.32 at the positions that had largest E(2) changes. An arginine substitution reduced i(0) significantly at six positions, with the magnitude of the reduction increasing, 16'-->2'. The measurements suggest that the 9', 12', and 13' residues experience large and late free-energy changes in the channel-opening process. We speculate that in the gating isomerization the pore-facing residues >6' and <16' experience multiple energy perturbations associated with changes in protein structure and, perhaps, hydration.


Asunto(s)
Activación del Canal Iónico , Receptores Colinérgicos/química , Receptores Colinérgicos/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Cinética , Ratones , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Receptores Colinérgicos/genética , Termodinámica
15.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1151-1161, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408544

RESUMEN

Two-pore channels (TPCs) are Ca2+-permeable ion channels localised to the endo-lysosomal system where they regulate trafficking of various cargoes including viruses. As a result, TPCs are emerging as important drug targets. However, their pharmacology is ill-defined. There are no approved drugs to target them. And their mechanism of ligand activation is largely unknown. Here, we identify a number of FDA-approved drugs as TPC pore blockers. Using a model of the pore of human TPC2 based on recent structures of mammalian TPCs, we virtually screened a database of ~1500 approved drugs. Because TPCs have recently emerged as novel host factors for Ebola virus entry, we reasoned that Ebola virus entry inhibitors may exert their effects through inhibition of TPCs. Cross-referencing hits from the TPC virtual screen with two recent high throughput anti-Ebola screens yielded approved drugs targeting dopamine and estrogen receptors as common hits. These compounds inhibited endogenous NAADP-evoked Ca2+ release from sea urchin egg homogenates, NAADP-mediated channel activity of TPC2 re-routed to the plasma membrane, and PI(3,5)P2-mediated channel activity of TPC2 expressed in enlarged lysosomes. Mechanistically, single channel analyses showed that the drugs reduced mean open time consistent with a direct action on the pore. Functionally, drug potency in blocking TPC2 activity correlated with inhibition of Ebola virus-like particle entry. Our results expand TPC pharmacology through the identification of approved drugs as novel blockers, support a role for TPCs in Ebola virus entry, and provide insight into the mechanisms underlying channel regulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Antivirales/farmacología , Canales de Calcio/metabolismo , Ebolavirus/metabolismo , Lisosomas/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/química , Canales de Calcio/genética , Evaluación de Medicamentos , Ebolavirus/genética , Células HEK293 , Humanos , Lisosomas/genética , Lisosomas/virología , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Erizos de Mar
16.
J Gen Physiol ; 130(6): 547-58, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18040057

RESUMEN

Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and function at the transmitter binding sites in the extracellular domain (ECD) with those at a "gate" in the transmembrane domain (TMD). We used Phi-value analysis to probe the relative timing of the gating motions of alpha-subunit residues located near the ECD-TMD interface. Mutation of four of the seven amino acids in the M2-M3 linker (which connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, changed the diliganded gating equilibrium constant (K(eq)) by up to 10,000-fold (P272 > I274 > A270 > G275). The average Phi-value for the whole linker was approximately 0.64. One interpretation of this result is that the gating motions of the M2-M3 linker are approximately synchronous with those of much of M2 (approximately 0.64), but occur after those of the transmitter binding site region (approximately 0.93) and loops 2 and 7 (approximately 0.77). We also examined mutants of six cys-loop residues (V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed K(eq) by 2800-, 10-, and 18-fold, respectively, and with an average Phi-value of 0.74, similar to those of other cys-loop residues. Even though V132 and I274 are close, the energetic coupling between I and V mutants of these positions was small (< or =0.51 kcal mol(-1)). The M2-M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those in TMD. These interactions are distributed along an approximately 16-A border and involve about a dozen residues.


Asunto(s)
Espacio Extracelular/fisiología , Activación del Canal Iónico/fisiología , Receptores Colinérgicos/fisiología , Animales , Línea Celular , ADN Complementario/genética , Electrofisiología , Transferencia de Energía , Humanos , Cinética , Potenciales de la Membrana/fisiología , Ratones , Modelos Moleculares , Conformación Molecular , Mutación/fisiología , Técnicas de Placa-Clamp , Receptores Colinérgicos/química , Receptores Colinérgicos/genética , Torpedo
17.
Neurosci Lett ; 446(2-3): 93-6, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18817848

RESUMEN

The involvement of 5-hydroxytryptaminergic (5-HTergic) system for the 3-nitropropionic acid (3-NPA)-induced depression of spinal reflexes was evaluated and compared with other energy deficiency condition (ischemia; glucose-free and O2-free). The monosynaptic (MSR) and polysynaptic reflex (PSR) potentials were recorded at ventral root by stimulating the corresponding dorsal root in neonatal rat spinal cord in vitro. Superfusion of 3-NPA (3.4 mM) or ischemic solution depressed the reflexes in a time-dependent manner abolishing them by 35 min. Pretreatment with pindolol (1 microM), ketanserin (10 microM) or ondansetron (0.1 microM); 5-HT1, 5-HT2, or 5-HT3 receptor antagonist, respectively, did not block the 3-NPA-induced depression of reflexes whereas, ischemia-induced depression was blocked by ondansetron. 5-HT content of the spinal cords incubated with 3-NPA (3.4 mM) for 30 min was decreased significantly (33 ng/g tissue) while increased (286 ng/g) in cords exposed to ischemic solution as compared to saline-treated cords (161 ng/g). Thus, 3-NPA-induced depression of spinal reflexes does not involve 5-HTergic pathway unlike ischemia-induced depression.


Asunto(s)
Encefalopatías Metabólicas/metabolismo , Metabolismo Energético/fisiología , Reflejo Anormal/fisiología , Serotonina/metabolismo , Isquemia de la Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Encefalopatías Metabólicas/inducido químicamente , Encefalopatías Metabólicas/fisiopatología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Femenino , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrocompuestos/toxicidad , Propionatos/toxicidad , Ratas , Reflejo Anormal/efectos de los fármacos , Antagonistas de la Serotonina/toxicidad , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Isquemia de la Médula Espinal/fisiopatología , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/fisiopatología , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
18.
Sci Signal ; 10(507)2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184032

RESUMEN

How the store-operated channel Orai1 opens and the number of gates that control channel opening and conductance remain unclear. In this issue of Science Signaling, Frischauf et al report on the importance of the basic pore region in addition to the hydrophobic gate in channel gating and identify a site in transmembrane domain 2 (TM2) that controls pore opening.


Asunto(s)
Calcio/química , Activación del Canal Iónico , Humanos , Proteínas de Neoplasias , Proteína ORAI1/química , Molécula de Interacción Estromal 1
19.
Cell Calcium ; 63: 29-32, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28262262

RESUMEN

Ca2+ influx across the plasma membrane is a key component of the receptor-evoked Ca2+ signaling that mediate numerous cell functions and reload the ER after partial or full ER Ca2+ store depletion. Ca2+ influx is activated in response to Ca2+ release from the ER, a concept developed by Jim Putney, and the channels mediating the influx are thus called store-operated Ca2+ influx channels, or SOCs. The molecular identity of the SOCs has been determined with the identification of the TRPC channels, STIM1 and the Orai channels. These channels are targeted to, operate and are regulated when at the ER/PM junctions. ER/PM junctions are a form of membrane contact sites (MCSs) that are present in all parts of the cells, where the ER makes contacts with cellular membranes and organelles. MCSs have many cellular functions, and are the sites of lipid and Ca2+ transport and delivery between organelles. This short review discusses aspects of MCSs in the context of Ca2+ transport.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Animales , Humanos
20.
J Comp Neurol ; 497(2): 209-22, 2006 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-16705673

RESUMEN

alpha(1)-Adrenergic receptors (ARs) are not well defined in the central nervous system. The particular cell types and areas that express these receptors are uncertain because of the lack of high avidity antibodies and selective ligands. We have developed transgenic mice that either systemically overexpress the human alpha(1A)-AR subtype fused with the enhanced green fluorescent protein (EGFP) or express the EGFP protein alone under the control of the mouse alpha(1A)-AR promoter. We confirm our transgenic model against the alpha(1A)-AR knockout mouse, which expresses the LacZ gene in place of the coding region for the alpha(1A)-AR. By using these models, we have now determined cellular localization of the alpha(1A)-AR in the brain, at the protein level. The alpha(1A)-AR or the EGFP protein is expressed prominently in neuronal cells in the cerebral cortex, hippocampus, hypothalamus, midbrain, pontine olivary nuclei, trigeminal nuclei, cerebellum, and spinal cord. The types of neurons were diverse, and the alpha(1A)-AR colocalized with markers for glutamic acid decarboxylase (GAD), gamma-aminobutyric acid (GABA), and N-methyl-D-aspartate (NMDA) receptors. Recordings from alpha(1A)-AR EGFP-expressing cells in the stratum oriens of the hippocampal CA1 region confirmed that these cells were interneurons. We could not detect expression of the alpha(1A)-AR in mature astrocytes, oligodendrocytes, or cerebral blood vessels, but we could detect the alpha(1A)-AR in oligodendrocyte progenitors. We conclude that the alpha(1A)-AR is abundant in the brain, expressed in various types of neurons, and may regulate the function of oligodendrocyte progenitors, interneurons, GABA, and NMDA receptor containing neurons.


Asunto(s)
Antígenos/metabolismo , Encéfalo/citología , Neuronas/fisiología , Oligodendroglía/metabolismo , Proteoglicanos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Células Madre , Ácido gamma-Aminobutírico/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1 , Animales , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neuronas/clasificación , Neuronas/efectos de los fármacos , Norepinefrina/análogos & derivados , Norepinefrina/farmacología , Técnicas de Placa-Clamp/métodos , Ensayo de Unión Radioligante/métodos , Receptores Adrenérgicos alfa 1/deficiencia , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA