Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123994, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354672

RESUMEN

Cancer progression often accompanies the stiffening of extracellular matrix (ECM) in and around the tumor, owing to extra deposition and cross-linking of collagen. Stiff ECM has been linked with poor prognosis and is known to fuel invasion and metastasis, notably in breast cancer. However, the underlying biochemical or metabolic changes and the cognate molecular signatures remain elusive. Here, we explored Raman spectroscopy to unveil the spectral fingerprints of breast cancer cells in response to extracellular mechanical cues. Using stiffness-tuneable hydrogels, we showed that cells grown on stiff ECM displayed morphological changes with high proliferation. We further demonstrated that Raman Spectroscopy, a label-free and non-invasive technique, could provide comprehensive information about the biochemical environment of breast cancer cells in response to varying ECM stiffness. Raman spectroscopic analysis classified the cells into distinct clusters based on principal component-based linear discriminant analysis (PC-LDA). Multivariate curve resolution-alternating least squares (MCR-ALS) analysis indicated that cells cultured on stiff ECM exhibited elevated nucleic acid content and lesser lipids. Interestingly, increased intensity of Raman bands corresponding to cytochrome-c was also observed in stiff ECM conditions, suggesting mitochondrial modulation. The key findings harboured by spectral profiles were also corroborated by transmission electron microscopy, confirming altered metabolic status as reflected by increased mitochondria number and decreased lipid droplets in response to ECM stiffening. Collectively, these findings not only give the spectral signatures for mechanoresponse but also provide the landscape of biochemical changes in response to ECM stiffening.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Colágeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA