Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270249

RESUMEN

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Asunto(s)
Glioblastoma , Telomerasa , Animales , Ratones , Argininosuccinatoliasa/genética , Argininosuccinatoliasa/metabolismo , Línea Celular Tumoral , Receptores ErbB/genética , Fumaratos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Mutación , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Acortamiento del Telómero , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas
3.
J Am Chem Soc ; 146(5): 3373-3382, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38272666

RESUMEN

Reticular chemistry effectively yields porous structures with distinct topological lattices for a broad range of applications. Polyhedral oligomeric silsesquioxane (POSS)-based octatopic building blocks with a rare Oh symmetric configuration and attracting inorganic features have great potential for creating three-dimensional (3D) covalent organic frameworks (COFs) with new topologies. However, the intrinsic flexibility and intensive motion of cubane-type POSS molecules make the construction of 3D regular frameworks challenging. Herein, by fastening three or four POSS cores with per aromatic rigid linker from rational steric directions, we successfully developed serial crystalline 3D COFs with unpresented "the" and scu topologies. Both the experimental and theoretical results proved the formation of target 3D POSS-based COFs. The resultant hybrid networks with designable chemical skeletons and high surface areas maintain the superiorities of both the inorganic and organic components, such as their high compatibility with inorganic salts, abundant periodic electroactive sites, excellent thermal stability, and open multilevel nanochannels. Consequently, the polycubane COFs could serve as outstanding solid electrolytes with a high ionic conductivity of 1.23 × 10-4 S cm-1 and a lithium-ion transference number of 0.86 at room temperature. This work offers a pathway to generate ordered lattices with multiconnected flexible cube motifs and enrich the topologies of 3D COFs for potential applications.

4.
J Am Chem Soc ; 146(2): 1305-1317, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38169369

RESUMEN

Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.

5.
Am J Transplant ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38561059

RESUMEN

Calcineurin inhibitors (CNIs) are essential in liver transplantation (LT); however, their long-term use leads to various adverse effects. The anti-intercellular adhesion molecule (ICAM)-1 monoclonal antibody MD3 is a potential alternative to CNI. Despite its promising results with short-term therapy, overcoming the challenge of chronic rejection remains important. Thus, we aimed to investigate the outcomes of long-term MD3 therapy with monthly MD3 monomaintenance in nonhuman primate LT models. Rhesus macaques underwent major histocompatibility complex-mismatched allogeneic LT. The conventional immunosuppression group (Con-IS, n = 4) received steroid, tacrolimus, and sirolimus by 4 months posttransplantation. The induction MD3 group (IN-MD3, n = 5) received short-term MD3 therapy for 3 months with Con-IS. The maintenance MD3 group (MA-MD3, n = 4) received MD3 for 3 months, monthly doses by 2 years, and then quarterly. The MA-MD3 group exhibited stable liver function without overt infection and had significantly better liver allograft survival than the IN-MD3 group. Development of donor-specific antibody and chronic rejection were suppressed in the MA-MD3 group but not in the IN-MD3 group. Donor-specific T cell responses were attenuated in the MA-MD3 group. In conclusion, MD3 monomaintenance therapy without maintenance CNI provides long-term liver allograft survival by suppressing chronic rejection, offering a potential breakthrough for future human trials.

6.
Curr Atheroscler Rep ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814418

RESUMEN

PURPOSE OF REVIEW: Vascular dementia (VaD) is the second most prevalent type of dementia after Alzheimer's disease.Hypercholesterolemia may increase the risk of dementia, but the association between cholesterol and cognitive function is very complex. From the perspective of peripheral and brain cholesterol, we review the relationship between hypercholesterolemia and increased risk of VaD and how the use of lipid-lowering therapies affects cognition. RECENT FINDINGS: Epidemiologic studies show since 1980, non-HDL-C levels of individuals has increased rapidly in Asian countries.The study has suggested that vascular risk factors increase the risk of VaD, such as disordered lipid metabolism. Dyslipidemia has been found to interact with chronic cerebral hypoperfusion to promote inflammation resulting in cognitive dysfunction in the brain.Hypercholesterolemia may be a risk factor for VaD. Inflammation could potentially serve as a link between hypercholesterolemia and VaD. Additionally, the potential impact of lipid-lowering therapy on cognitive function is also worth considering. Finding strategies to prevent and treat VaD is critical given the aging of the population to lessen the load on society. Currently, controlling underlying vascular risk factors is considered one of the most effective methods of preventing VaD. Understanding the relationship between abnormal cholesterol levels and VaD, as well as discovering potential serum biomarkers, is important for the early prevention and treatment of VaD.

7.
Arch Microbiol ; 206(5): 232, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658486

RESUMEN

Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.


Asunto(s)
Antiinflamatorios no Esteroideos , Biotransformación , Ibuprofeno , Naproxeno , Ibuprofeno/metabolismo , Naproxeno/metabolismo , Antiinflamatorios no Esteroideos/metabolismo , Biodegradación Ambiental
8.
J Neurooncol ; 166(1): 59-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146046

RESUMEN

PURPOSE: Atypical meningiomas could manifest early recurrence after surgery and even adjuvant radiotherapy. We aimed to construct a clinico-radiomics model to predict post-operative recurrence of atypical meningiomas based on clinicopathological and radiomics features. MATERIALS AND METHODS: The study cohort was comprised of 224 patients from two neurosurgical centers. 164 patients from center I were divided to the training cohort for model development and the testing cohort for internal validation. 60 patients from center II were used for external validation. Clinicopathological characteristics, radiological semantic, and radiomics features were collected. A radiomic signature was comprised of four radiomics features. A clinico-radiomics model combining the radiomics signature and clinical characteristics was constructed to predict the recurrence of atypical meningiomas. RESULTS: 1920 radiomics features were extracted from the T1 Contrast and T2-FLAIR sequences of patients in center I. The radiomics signature was able to differentiate post-operative patients into low-risk and high-risk groups based on tumor recurrence (P < 0.001). A clinic-radiomics model was established by combining age, extent of resection, Ki-67 index, surgical history and the radiomics signature for recurrence prediction in atypical meningiomas. The model achieved a good prediction performance with the integrated AUC of 0.858 (0.802-0.915), 0.781 (0.649-0.912) and 0.840 (0.747-0.933) in the training, internal validation and external validation cohort, respectively. CONCLUSIONS: The present study established a radiomics signature and a clinico-radiomics model with a favorable performance in predicting tumor recurrence for atypical meningiomas.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/cirugía , Radiómica , Periodo Posoperatorio , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Estudios Retrospectivos
9.
Xenotransplantation ; 31(3): e12863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751087

RESUMEN

Overexpression of human CD200 (hCD200) in porcine endothelial cells (PECs) has been reported to suppress xenogeneic immune responses of human macrophages against porcine endothelial cells. The current study aimed to address whether the above-mentioned beneficial effect of hCD200 is mediated by overcoming the molecular incompatibility between porcine CD200 (pCD200) and hCD200 receptor or simply by increasing the expression levels of CD200 without any molecular incompatibility across the two species. We overexpressed hCD200 or pCD200 using lentiviral vectors with V5 marker in porcine endothelial cells and compared their suppressive activity against U937-derived human macrophage-like cells (hMCs) and primary macrophages. In xenogeneic coculture of porcine endothelial cells and human macrophage-like cells or macrophages, hCD200-porcine endothelial cells suppressed phagocytosis and cytotoxicity of human macrophages to a greater extent than pCD200-porcine endothelial cells. Secretion of tumor necrosis factor-α, interleukin-1ß, and monocyte chemoattractant protein-1 from human macrophages and expression of M1 phenotypes (inducible nitric oxide synthase, dectin-1, and CD86) were also suppressed by hCD200 to a greater extent than pCD200. Furthermore, in signal transduction downstream of CD200 receptor, hCD200 induced Dok2 phosphorylation and suppressed IκB phosphorylation to a greater extent than pCD200. The above data supported the possibility of a significant molecular incompatibility between pCD200 and human CD200 receptor, suggesting that the beneficial effects of hCD200 overexpression in porcine endothelial cells could be mediated by overcoming the molecular incompatibility across the species barrier rather than by simple overexpression effects of CD200.


Asunto(s)
Antígenos CD , Células Endoteliales , Macrófagos , Trasplante Heterólogo , Animales , Humanos , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos CD/genética , Porcinos , Macrófagos/inmunología , Macrófagos/metabolismo , Trasplante Heterólogo/métodos , Células Endoteliales/inmunología , Fagocitosis , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Receptores de Orexina/inmunología , Técnicas de Cocultivo
10.
Artículo en Inglés | MEDLINE | ID: mdl-38430181

RESUMEN

Objective: Gestational diabetes mellitus (GDM) is a metabolic disorder that occurs in 3-5% of pregnancies. The inflammatory response is essential to the development of GDM. Resistant dextrin is a natural fiber and exhibits an antidiabetic effect against diabetes. We investigate resistant dextrin's preventive role and underlying mechanism against STZ-induced GDM. Material and method: Female Wistar rats were utilized, and GDM was induced in pregnant rats using STZ. The levels of glycated hemoglobin (HbA1c), resistin, serum-c-peptide, free fatty acid, antioxidant, hepatic glycogen, lipid, inflammatory cytokines, apoptosis, and inflammatory parameters were estimated. mRNA expression of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NF-κB) and NOD-like receptor protein 3 (NLRP3) was estimated. We also estimated the histopathology of pancreatic and liver tissue. Result: Body weight, plasma insulin, fetal body weight, and blood glucose levels were all considerably (P < .001) improved by resistant dextrin, while placental weight and blood sugar levels were also decreased. Resistant dextrin significantly (P < .001) suppressed the levels of HbA1c, resistin, serum-c-peptide, and hepatic glycogen and improved the free fatty acid (FFA) level. Resistant dextrin significantly (P < .001) altered the level of adiponectin, leptin, intercellular Adhesion Molecule 1 (ICAM-1), and visfatin; antioxidant parameters such as malonaldehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione S-transferase GST, inflammatory cytokines like tumor necrosis factor- α (TNF-α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-2 (IL-2), interferon- γ (INF-γ), interleukin-10 (IL-10); apoptosis parameters include Bcl-2, caspase-3, and Bax, respectively. Resistant dextrin significantly (P < .001) suppressed the mRNA expression of NF-κB, MyD88, NLRP3, and TLR4. Resistant dextrin altered the histopathological changes in the pancreas and hepatic tissue. Discussion and Conclusion: In short, resistant dextrin demonstrated a protective effect against STZ-induced GDM by modulating the TLR4/MyD88/NF-κB signaling pathway.

11.
Ecotoxicol Environ Saf ; 277: 116401, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677069

RESUMEN

Exposure to fine particulate matter (PM) is associated with the neurodegenerative diseases. Coke oven emissions (COEs) in occupational environment are important sources of PM. However, its neurotoxicity is still unclear. Therefore, evaluating the toxicological effects of COE on the nervous system is necessary. In the present study, we constructed mouse models of COE exposure by tracheal instillation. Mice exposed to COE showed signs of cognitive impairment. This was accompanied by a decrease in miR-145a-5p and an increase in SIK1 expression in the hippocampus, along with synaptic structural damage. Our results demonstrated that COE-induced miR-145a-5p downregulation could increase the expression of SIK1 and phosphorylated SIK1, inhibiting the cAMP/PKA/CREB pathway by activating PDE4D, which was associated with reduced synaptic structural plasticity. Furthermore, restoring of miR-145a-5p expression based on COE exposure in HT22 cells could partially reversed the negative effects of COE exposure through the SIK1/PDE4D/cAMP axis. Collectively, our findings link epigenetic regulation with COE-induced neurotoxicity and imply that miR-145a-5p could be an early diagnostic marker for neurological diseases in patients with COE occupational exposure.


Asunto(s)
Disfunción Cognitiva , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , MicroARNs , Plasticidad Neuronal , Proteínas Serina-Treonina Quinasas , Animales , MicroARNs/genética , Ratones , Disfunción Cognitiva/inducido químicamente , Plasticidad Neuronal/efectos de los fármacos , Masculino , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad
12.
Plant Dis ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506905

RESUMEN

The occurrence of rust fungi on Corydalis bungeana Turcz. and Salix babylonica L. were found in same area of Hebei Province, China from 2022 to 2023. The life cycle connection of these rust fungi was suspected because Peng et al. (2022) reported the life cycle of Melampsora ferrinii Toome & Aime by inoculations, producing spermogonia and aecia on Corydalis species, and uredinia on S. babylonica. The morphology of the uredinial and telial stages on S. babylonica collected in the field was identical with the description of M. ferrinii by Toome and Aime (2015), and its identity was confirmed by phylogenetic analyses using the method of Ji et al. (2020) (LSU-PP087777, ITS-PP091274; Similarity with M. ferrinii: LSU-100%, ITS-99.85%). To confirm the life cycle of this rust fungus, inoculations were conducted on C. bungeana with basidiospores obtained from the teliospores on fallen leaves of Salix babylonica. The fallen leaves producing basidiospores were cut into small pieces (ca. 5 mm2) and placed on healthy leaves of C. bungeana. The inoculated plants were kept in a moist plastic box in darkness at 15-20℃ for 2 days and then transferred to the floor near windows at about 15-20℃ for observations. Ten days after inoculations small yellow spots of spermogonia appeared on the upper surface of the leaves of C. bungeana. About 7 days later, pale yellow aecia with aeciospores were produced mainly on the under surface of the leaves and petioles. The morphology of rust fungus on C. bungeana collected from the fields and obtained by inoculations was identical with the description by Peng et al. (2022). Phylogenetic analyses also showed that a specimen on C. bungeana collected from the field (LSU-OR607838, ITS-OR612063) were included into the same clade of M. ferrinii (Similarity: LSU-100 %, ITS-99.85). Based on morphology, inoculations and DNA sequence analyses, the rust fungi on C. bungeana and S. babylonica are identified as different stages of life cycle of M. ferrinii. This rust fungus has been reported to produce spermogonia and aecia on C. acuminata Franch., C. edulis Maxim. and C. racemosa (Thunb.) Pers. in China (Peng et al. 2022), and uredinia and telia on S. babylonica in USA, Argentina and Iran (Toome and Aime 2015, Abbasi et al. 2024), and on Salix sp. in Chile (Zapata 2016). Therefore, C. bungeana is a new host for M. ferrinii, and its field occurrence on S. babylonica is reported for the first time in China although Peng et al. (2022) reported successful results in its inoculations to S. babylonica in China. This report contributes to the control of rust diseases caused by this species. Specimens used in this experiment were deposited in the Fungal Herbarium of the Jilin Agricultural University, Changchun, China (HMJAU) and sequences newly analyzed were deposited in GenBank.

13.
J Stroke Cerebrovasc Dis ; 33(4): 107612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309380

RESUMEN

OBJECTIVES: Previous observational studies have suggested that gastroesophageal reflux disease (GERD) increases the risk of stroke, but the specific underlying mechanisms are unclear. We investigated the causal associations of GERD with stroke and its subtypes using Mendelian randomization (MR), and evaluated the potential mediating effects of modifiable stroke risk factors in the causal pathway. METHODS: Genetic instrumental variables for GERD were extracted from the latest genome-wide association study (GWAS) summary level data. We initially performed two-sample MR to examine the association of GERD with stroke and its subtypes, including ischemic stroke, intracranial hemorrhage, and the major subtypes of ischemic stroke. Two-step MR was further employed to investigate the mediating effect of 15 risk factors in the causal pathway. RESULTS: We found significant causal associations of genetically predicted GERD with increased risk of stroke (OR: 1.22 95% CI: 1.126-1.322), ischemic stroke (OR: 1.19 95% CI: 1.098-1.299), and large-artery stroke (OR: 1.49 95% CI: 1.214-1.836). Replication and sensitivity analyses yielded consistent effect directions and similar estimates. Further mediation analyses indicated that hypertension (HTN), systolic blood pressure (SBP), and type 2 diabetes (T2D) mediated 36.0%, 9.0%, and 15.8% of the effect of GERD on stroke; 42.9%, 10.8%, and 21.4% for ischemic stroke, and 23.3%; 7.9%, and 18.7% for large-artery stroke, respectively. CONCLUSIONS: This study supports that GERD increases susceptibility to stroke, ischemic stroke, and large-artery stroke, and is partially mediated by HTN, SBP, and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Reflujo Gastroesofágico , Hipertensión , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Reflujo Gastroesofágico/diagnóstico , Reflujo Gastroesofágico/epidemiología , Reflujo Gastroesofágico/genética , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética
14.
Molecules ; 29(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257353

RESUMEN

There is a serious mixing of Piperis Herba and Piperis Kadsurae Caulis in various parts of China due to the similar traits of lianas, and there is a lack of systematic research on the compound and activity evaluation of the two. Likewise, the differences in compounds brought about by the distribution of origin also need to be investigated. In this study, high-resolution liquid-mass spectrometry (UPLC-Q-Zeno-TOF-MS/MS) was used to analyze samples of Piperis Herba from five origins and Piperis Kadsurae Caulis from five origins, with three batches collected from each origin. The compounds were identified based on precise molecular weights, secondary fragments, and an online database combined with node-to-node associations of the molecular network. The t-test was used to screen and analyze the differential compounds between the two. Finally, the preliminary evaluation of antioxidant activity of the two herbs was carried out using DPPH and ABTS free radical scavenging assays. The results showed that a total of 72 compounds were identified and deduced in the two Chinese medicines. These compounds included 54 amide alkaloids and 18 other compounds, such as flavonoid glycosides. The amide alkaloids among them were then classified, and the cleavage pathways in positive ion mode were summarized. Based on the p-value of the t-test, 32 differential compounds were screened out, and it was found that the compounds of Piperis Herba were richer and possessed a broader spectrum of antioxidant activity, thus realizing a multilevel distinction between Piperis Herba and Piperis Kadsurae Caulis. This study provides a preliminary reference for promoting standardization and comprehensive quality research of the resources of Piperis Herba using Piperis Kadsurae Caulis as a reference.


Asunto(s)
Alcaloides , Antioxidantes , Antioxidantes/farmacología , Espectrometría de Masas en Tándem , Amidas , Bioensayo
15.
Inflammopharmacology ; 32(1): 335-354, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097885

RESUMEN

BACKGROUND: The clinical efficacy and safety of intravenous immunoglobulin (IVIg) treatment for COVID-19 remain controversial. This study aimed to map the current status and gaps of available evidence, and conduct a meta-analysis to further investigate the benefit of IVIg in COVID-19 patients. METHODS: Electronic databases were searched for systematic reviews/meta-analyses (SR/MAs), primary studies with control groups, reporting on the use of IVIg in patients with COVID-19. A random-effects meta-analysis with subgroup analyses regarding study design and patient disease severity was performed. Our outcomes of interest determined by the evidence mapping, were mortality, length of hospitalization (days), length of intensive care unit (ICU) stay (days), number of patients requiring mechanical ventilation, and adverse events. RESULTS: We included 34 studies (12 SR/MAs, 8 prospective and 14 retrospective studies). A total of 5571 hospitalized patients were involved in 22 primary studies. Random-effects meta-analyses of very low to moderate evidence showed that there was little or no difference between IVIg and standard care or placebo in reducing mortality (relative risk [RR] 0.91; 95% CI 0.78-1.06; risk difference [RD] 3.3% fewer), length of hospital (mean difference [MD] 0.37; 95% CI - 2.56, 3.31) and ICU (MD 0.36; 95% CI - 0.81, 1.53) stays, mechanical ventilation use (RR 0.92; 95% CI 0.68-1.24; RD 2.8% fewer), and adverse events (RR 0.98; 95% CI 0.84-1.14; RD 0.5% fewer) of patients with COVID-19. Sensitivity analysis using a fixed-effects model indicated that IVIg may reduce mortality (RR 0.76; 95% CI 0.60-0.97), and increase length of hospital stay (MD 0.68; 95% CI 0.09-1.28). CONCLUSION: Very low to moderate certainty of evidence indicated IVIg may not improve the clinical outcomes of hospitalized patients with COVID-19. Given the discrepancy between the random- and fixed-effects model results, further large-scale and well-designed RCTs are warranted.


Asunto(s)
COVID-19 , Inmunoglobulinas Intravenosas , Humanos , Inmunoglobulinas Intravenosas/efectos adversos , Estudios Prospectivos , Estudios Retrospectivos , Revisiones Sistemáticas como Asunto
16.
Chin J Traumatol ; 27(1): 18-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37423838

RESUMEN

PURPOSE: The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway. METHODS: We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant. RESULTS: Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F = 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F = 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F = 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F = 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F = 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F = 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression. CONCLUSIONS: CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Golpe de Calor , Isoquinolinas , Sulfonamidas , Animales , Ratas , Apoptosis , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Péptido Relacionado con Gen de Calcitonina/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Caspasa 3 , Proteínas Proto-Oncogénicas c-bcl-2 , Ratas Sprague-Dawley , Golpe de Calor/metabolismo , Golpe de Calor/patología
17.
Angew Chem Int Ed Engl ; 63(11): e202319211, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38198190

RESUMEN

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

18.
Angew Chem Int Ed Engl ; 63(17): e202400132, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38409997

RESUMEN

Li-CO2 batteries have received significant attention owing to their advantages of combining greenhouse gas utilization and energy storage. However, the high kinetic barrier between gaseous CO2 and the Li2CO3 product leads to a low operating voltage (<2.5 V) and poor energy efficiency. In addition, the reversibility of Li2CO3 has always been questioned owing to the introduction of more decomposition paths caused by its higher charging plateau. Here, a novel "trinity" Li-CO2 battery system was developed by synergizing CO2, soluble redox mediator (2,2,6,6-tetramethylpiperidoxyl, as TEM RM), and reduced graphene oxide electrode to enable selective conversion of CO2 to Li2C2O4. The designed Li-CO2 battery exhibited an output plateau reaching up to 2.97 V, higher than the equilibrium potential of 2.80 V for Li2CO3, and an ultrahigh round-trip efficiency of 97.1 %. The superior performance of Li-CO2 batteries is attributed to the TEM RM-mediated preferential growth mechanism of Li2C2O4, which enhances the reaction kinetics and rechargeability. Such a unique design enables batteries to cope with sudden CO2-deficient environments, which provides an avenue for the rationally design of CO2 conversion reactions and a feasible guide for next-generation Li-CO2 batteries.

19.
Angew Chem Int Ed Engl ; 63(5): e202317949, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078904

RESUMEN

Solid-state lithium (Li) batteries promise both high energy density and safety while existing solid-state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3 PW12 O40 and Li3 PMo12 O40 , are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm-1 and a low activation energy of 0.23 eV are obtained due to the optimized three-dimensional Li+ migration network of Li3 PW12 O40 . Li3 PW12 O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high-voltage cathodes. As a result, all-solid-state Li metal batteries fabricated with Li/Li3 PW12 O40 /LiNi0.5 Co0.2 Mn0.3 O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm-2 , as well as a cost-competitive SSEs price of $5.68 kg-1 . Moreover, Li3 PMo12 O40 homologous to Li3 PW12 O40 was obtained via isomorphous substitution, which formed a low-resistance interface with Li3 PW12 O40 . Applications of Li3 PW12 O40 and Li3 PMo12 O40 in Li-air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low-cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high-energy solid-state Li metal batteries.

20.
J Am Chem Soc ; 145(10): 5718-5729, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36880105

RESUMEN

The demand for high-energy sustainable rechargeable batteries has motivated the development of lithium-oxygen (Li-O2) batteries. However, the inherent safety issues of liquid electrolytes and the sluggish reaction kinetics of existing cathodes remain fundamental challenges. Herein, we demonstrate a promising photo-assisted solid-state Li-O2 battery based on metal-organic framework-derived mixed ionic/electronic conductors, which simultaneously serve as the solid-state electrolytes (SSEs) and the cathode. The mixed conductors could effectively harvest ultraviolet-visible light to generate numerous photoelectrons and holes, which is favorable to participate in the electrochemical reaction, contributing to greatly improved reaction kinetics. According to the study on conduction behavior, we discover that the mixed conductors as SSEs possess outstanding Li+ conductivity (1.52 × 10-4 S cm-1 at 25 °C) and superior chemical/electrochemical stability (especially toward H2O, O2-, etc.). Application of mixed ionic electronic conductors in photo-assisted solid-state Li-O2 batteries further reveals that a high energy efficiency (94.2%) and a long life (320 cycles) can be achieved with a simultaneous design of SSEs and cathodes. The achievements present the widespread universality in accelerating the development of safe and high-performance solid-state batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA