Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Gastroenterol ; 23(1): 153, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189078

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) is maturely applied for gene fusion detection. Although tumor fusion burden (TFB) has been identified as an immune marker for cancer, the relationship between these fusions and the immunogenicity and molecular characteristics of gastric cancer (GC) patients remains unclear. GCs have different clinical significance depending on their subtypes, and thus, this study aimed to investigate the characteristics and clinical relevance of TFB in non-Epstein-Barr-virus-positive (EBV+) GC with microsatellite stability (MSS). METHODS: A total of 319 GC patients from The Cancer Genome Atlas stomach adenocarcinoma (TCGA-STAD) and a cohort of 45-case from ENA (PRJEB25780) were included. The cohort characteristics and distribution of TFB among the patients were analyzed. Additionally, the correlations of TFB with mutation characteristics, pathway differences, relative abundance of immune cells, and prognosis were examined in the TCGA-STAD cohort of MSS and non-EBV (+) patients. RESULTS: We observed that in the MSS and non-EBV (+) cohort, the TFB-low group exhibited significantly lower gene mutation frequency, gene copy number, loss of heterozygosity score, and tumor mutation burden than in the TFB-high group. Additionally, the TFB-low group exhibited a higher abundance of immune cells. Furthermore, the immune gene signatures were significantly upregulated in the TFB-low group, 2-year disease-specific survival was markedly increased in the TFB-low group compared with to the TFB-high group. The rates of TFB-low cases were significantly higher TFB-than high cases in durable clinical benefit (DCB) and response groups with pembrolizumab treatment. Low TFB may serve as a predictor of GC prognosis, and the TFB-low group exhibits higher immunogenicity. CONCLUSION: In conclusion, this study reveals that the TFB-based classification of GC patient may be instructive for individualized immunotherapy regimens.


Asunto(s)
Adenocarcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Relevancia Clínica , Pronóstico , Mutación , Adenocarcinoma/patología
2.
Sci Rep ; 12(1): 687, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027588

RESUMEN

The current diagnostic technologies for assessing the axillary lymph node metastasis (ALNM) status accurately in breast cancer (BC) remain unsatisfactory. Here, we developed a diagnostic model for evaluating the ALNM status using a combination of mRNAs and the T stage of the primary tumor as a novel biomarker. We collected relevant information on T1-2 BC from public databases. An ALNM prediction model was developed by logistic regression based on the screened signatures and then internally and externally validated. Calibration curves and the area under the curve (AUC) were employed as performance metrics. The prognostic value and tumor immune infiltration of the model were also determined. An optimal diagnostic model was created using a combination of 11 mRNAs and T stage of the primary tumor and showed high discrimination, with AUCs of 0.828 and 0.746 in the training sets. AUCs of 0.671 and 0.783 were achieved in the internal validation cohorts. The mean external AUC value was 0.686 and ranged between 0.644 and 0.742. Moreover, the new model has good specificity in T1 and hormone receptor-negative/human epidermal growth factor receptor 2- negative (HR-/HER2-) BC and good sensitivity in T2 BC. In addition, the risk of ALNM and 11 mRNAs were correlated with the infiltration of M2 macrophages, as well as the prognosis of BC. This novel prediction model is a useful tool to identify the risk of ALNM in T1-2 BC patients, particularly given that it can be used to adjust surgical options in the future.


Asunto(s)
Axila , Neoplasias de la Mama/patología , Metástasis Linfática/diagnóstico , Modelos Teóricos , Área Bajo la Curva , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Predicción , Humanos , Modelos Logísticos , Metástasis Linfática/genética , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , ARN Mensajero , Receptor ErbB-2 , Riesgo
3.
Onco Targets Ther ; 9: 2565-74, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199567

RESUMEN

Radioresistance has been demonstrated to be involved in the poor prognosis of patients with non-small-cell lung cancer (NSCLC). However, the underlying mechanism remains largely unclear. Investigation on special therapeutic targets associated with radioresistance shows promises for the enhancement of clinical radiotherapy effect toward NSCLC. This study aimed to reveal the role of Stathmin1 (STMN1) in radioresistance in NSCLC as well as the underlying mechanism. Our data showed that the protein levels of STMN1 were significantly upregulated in NSCLC cells subjected to radiation, accompanied with the activation of autophagy. Knockdown of STMN1 expression enhanced the sensitivity of NSCLC cells to X-ray, and the radiation-induced autophagy was also inhibited. Molecular mechanism investigation showed that knockdown of STMN1 expression upregulated the activity of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in NSCLC cells. Moreover, the activation of PI3K/mTOR signaling showed an inhibitory effect on the autophagy and radioresistance induced by STMN1 in NSCLC cells. In addition, luciferase reporter assay data indicated that STMN1 was a direct target gene of miR-101, which had been reported to be an inhibitor of autophagy. Based on these data, we suggest that as a target gene of miR-101, STMN1 promotes the radioresistance by induction of autophagy through PI3K/mTOR signaling pathway in NSCLC. Therefore, STMN1 may become a potential therapeutic target for NSCLC radiotherapy.

4.
Sheng Wu Gong Cheng Xue Bao ; 25(7): 1014-21, 2009 Jul.
Artículo en Zh | MEDLINE | ID: mdl-19835142

RESUMEN

Arylalkylamine N-acetyltransferase (AANAT) and Hydroxyindole O-methyltransferase(HIOMT) are the key regulation enzymes in the melatonin biosynthesis pathway in mammals. The AANAT and HIOMT genes were constructed into a binary plant expression vector YXu55. Using leaf strips as the recipiences, we efficiently transformed tobacco (Nicotiana tabacum) variety qinyan 95 by the Agrobacterium mediated method. After gradient selection with gentamycin, a number of transgenic plants were regenerated. Southern blot and RT-PCR analyses showed that the AANAT-HIOMT genes were integrated into the genome of the transgenic plants and the target genes could express at the level of RNA transcription. By RP-HPLC, we measured the melatonin contents in transgenic plants. The results showed that the melatonin level in YXu55 (containing the gentamycin-resistance gene, the AANAT gene and HIOMT gene) transgenic plants were much higher than those in pZP122 (control containing only the gentamycin-resistance gene) transgenic plants and nontransgenic plants. The content of melatonin in pZP122 transgenic plants was nearly the same as that in nontransgenic plants. Physiological determination of antioxidative characteristics demonstrated that 1) the capacity of total antioxidation, 2) the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and 3) the content of glutathione (GSH) were increased in YXu55 transgenic plants containing the AANAT-HIOMT genes as compared to the control plants (pZP122 or nontransgenic plants). At the same time, malonaldehyde (MDA) content did not appear remarkably difference between transgenic plants and nontransgenic plants. The above mentioned facts indicate enhancement of melatonin levels in YXu55 transgenic plants might help to reduce damage by oxidative stress.


Asunto(s)
Agrobacterium tumefaciens/genética , N-Acetiltransferasa de Arilalquilamina/genética , Melatonina/biosíntesis , Nicotiana/genética , Transducción Genética/métodos , Acetilserotonina O-Metiltransferasa/genética , Catalasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peroxidasa/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Superóxido Dismutasa/metabolismo , Nicotiana/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA