Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834972

RESUMEN

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Asunto(s)
Antioxidantes , Glucólisis , Hígado , Metionina , Animales , Hígado/metabolismo , Hígado/efectos de los fármacos , Glucólisis/efectos de los fármacos , Antioxidantes/metabolismo , Ovinos , Metionina/farmacología , Metionina/administración & dosificación , Metionina/metabolismo , Lisina/metabolismo , Dieta con Restricción de Proteínas/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Masculino
2.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39337353

RESUMEN

This study investigated the effects of dietary resveratrol (RES) and ß-Hydroxy-ß-methyl butyric acid (HMB) on immune, oxidative, and morphological changes in the livers of Tibetan sheep using transcriptomics and metabolomics. One hundred and twenty male Tibetan lambs of a similar initial weight (15.5 ± 0.14 kg) were randomly divided into four groups with thirty lambs per treatment: (1) H group (basal diet without RES or HMB); (2) H-RES group (1.5 g/day of RES); (3) H-HMB group (1250 mg/day of HMB); (4) H-RES-HMB group (1.5 g/day of RES and 1250 mg/day of HMB). The experiment was conducted for 100 days, including a pre-test period of 10 days and a formal period of 90 days. The results showed significantly increased concentrations of glutathione peroxidase, superoxide dismutase, and IgM in the H-RES-HMB group (p < 0.05), while the malondialdehyde levels were significantly decreased (p < 0.05). The glycolytic indices including creatinine kinase (CK), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) were significantly increased in the H-RES-HMB group compared with the others (p < 0.05). A histological analysis showed that the hepatic plate tissue in the H-RES-HMB group appeared normal with multiple cells. The transcriptomic analysis showed that the expression of genes associated with the calcium signaling pathway (MYLK2, CYSLTR2, ADCY1, HRH1, ATP2B2, NOS2, HRC, ITPR1, and CAMK2B) and the NF-κB signaling pathway (BCL2 and CARD14) in the H-RES-HMB group were upregulated. The key differential metabolites (d-pyroglutamic acid, DL-serine, DL-threonine, fumarate, and glyceric acid) were enriched in the pathways associated with D-amino acid metabolism, the citrate cycle (TCA cycle), and carbon metabolism. The combined transcriptomic and non-targeted metabolomic analyses showed the co-enrichment of differential genes (NOS2 and GLUD1) and metabolites (fumarate) in arginine biosynthesis-regulated glycolytic activity, whereas the differential genes (ME1, SCD5, FABP2, RXRG, and CPT1B) and metabolites (Leukotriene b4) co-enriched in the PPAR signaling pathway affected the immune response by regulating the PI3K/AKT and cGMP/PKG signaling. In conclusion, the dietary RES and HMB affected the hepatic antioxidant capacity, immune response, and glycolytic activity through modulating the transcriptome (BCL2, CAMK2B, ITPR1, and IL1R1) and metabolome (DL-serine, DL-threonine, fumaric acid, and glycolic acid).


Asunto(s)
Hígado , Metaboloma , Resveratrol , Transcriptoma , Animales , Hígado/metabolismo , Hígado/efectos de los fármacos , Ovinos , Transcriptoma/efectos de los fármacos , Metaboloma/efectos de los fármacos , Resveratrol/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Suplementos Dietéticos , Perfilación de la Expresión Génica , Alimentación Animal , Tibet , Antioxidantes/metabolismo , Metabolómica/métodos
3.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1016-1027, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38432684

RESUMEN

Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression. However, the regulatory mechanisms of lipid metabolism in yaks involved in circRNAs remain poorly understood. The IMF plays a crucial role in the quality of yak meat, to greatly improve the meat quality. In this study, the fatty acid profiles of yak IMF were determined and circRNAs were sequenced. The results showed that the total of polyunsaturated fatty acid (PUFA) content of adult yak muscle was significantly higher than that in yak calves (p < 0.05). A total of 29,021 circRNAs were identified in IMF tissue, notably, 99 differentially expressed (DE) circRNAs were identified, to be associated with fat deposition, the most significant of which were circ_12686, circ_6918, circ_3582, ci_106 and ci_123 (A circRNA composed of exons is labelled 'circRNA' and a circRNA composed of introns is labelled 'ciRNA'). KEGG pathway enrichment analysis showed that the differential circRNAs were enriched in four pathways associated with fat deposition (e.g., the peroxisome proliferator-activated receptor signalling, fatty acid degradation, sphingolipid metabolism and sphingolipid signalling pathways). We also constructed co-expression networks of DE circRNA-miRNA using high-throughput sequencing in IMF deposition, from which revealed that ci_106 target binding of bta-miR-130b, bta-miR-148a, bta-miR-15a, bta-miR-34a, bta-miR-130a, bta-miR-17-5p and ci_123 target binding of bta-miR-150 were involved in adipogenesis. The study revealed the role of the circRNAs in the IMF deposition in yak and its influence on meat quality the findings demonstrated the circRNA differences in the development of IMF with the increase of age, thus providing a theoretical basis for further research on the molecular mechanism of IMF deposition in yaks.


Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético , ARN Circular , Animales , ARN Circular/genética , ARN Circular/metabolismo , Bovinos/genética , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica/fisiología , Tejido Adiposo/metabolismo , Masculino
4.
Animals (Basel) ; 14(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891581

RESUMEN

In ruminants, supplementing appropriate amounts of amino acids improves growth, feed utilization efficiency, and productivity. This study aimed to assess the effects of different Lys/Met ratios on the ruminal microbial community and the metabolic profiling in Tibetan sheep using 16S rDNA sequencing and non-target metabolomics. Ninety-two-month-old Tibetan rams (initial weight = 15.37 ± 0.92 kg) were divided into three groups and fed lysine/methionine (Lys/Met) of 1:1 (LP-L), 2:1 (LP-M), and 3:1 (LP-H) in low-protein diet, respectively. Results: The T-AOC, GSH-Px, and SOD were significantly higher in the LP-L group than in LP-H and LP-M groups (p < 0.05). Cellulase activity was significantly higher in the LP-L group than in the LP-H group (p < 0.05). In the fermentation parameters, acetic acid concentration was significantly higher in the LP-L group than in the LP-H group (p < 0.05). Microbial sequencing analysis showed that Ace and Chao1 indicators were significantly higher in LP-L than in LP-H and LP-M (p < 0.05). At the genus level, the abundance of Rikenellaceae RC9 gut group flora and Succiniclasticum were significantly higher in LP-L than in LP-M group (p < 0.05). Non-target metabolomics analyses revealed that the levels of phosphoric acid, pyrocatechol, hydrocinnamic acid, banzamide, l-gulono-1,4-lactone, cis-jasmone, Val-Asp-Arg, and tropinone content were higher in LP-L. However, l-citrulline and purine levels were lower in the LP-L group than in the LP-M and LP-H groups. Banzamide, cis-jasmone, and Val-Asp-Arg contents were positively correlated with the phenotypic contents, including T-AOC, SOD, and cellulase. Phosphoric acid content was positively correlated with cellulase and lipase activities. In conclusion, the Met/Lys ratio of 1:1 in low-protein diets showed superior antioxidant status and cellulase activity in the rumen by modulating the microbiota and metabolism of Tibetan sheep.

5.
Animals (Basel) ; 14(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123675

RESUMEN

The dietary crude protein level could affect ruminal fermentation parameters and the microflora of ruminants. The present study's aim was to investigate the effects of different protein level diets on ruminal morphology, fermentation parameters, digestive enzyme activity, microflora and metabolites of Tibetan sheep. Ninety weaned lambs (initial weight of 15.40 ± 0.81 kg, 2 months old) were selected and randomly divided into three groups (six pens/treatment, five rams/pen). Dietary treatments were formulated with 13.03% (high protein, HP), 11.58% (moderate protein, MP) and 10.20% (low protein, LP), respectively. Compared with LP, both papillae length and papillae width were significantly promoted in HP and MP (p < 0.05). The concentrations of ammonia nitrogen, total VFAs, propionic acids and butyric acids in HP were significantly increased compared to those in MP and LP (p < 0.05). The activities of protease and α-amylase in HP were significantly greater than those of LP (p < 0.05). For the ruminal microbial community, higher proportions of phylum Prevotella 1 and Succiniclasticum and genus Rikenellaceae RC9 gut group and Ruminococcus 1 were observed in HP (p < 0.05). A total of 60 differential metabolites (DMs) (28 up, 32 down) between HP and MP; 73 DMs (55 up, 18 down) between HP and LP; and 65 DMs (49 up, 16 down) between MP and LP were identified. Furthermore, four pathways of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, bile secretion and ABC transporters were significantly different (p < 0.05). The abundance of phylum Prevotella 1 was negatively associated with stearic acid and palmitic acid but positively associated with the taurine. The abundance of genus Ruminococcus 1 was negatively associated with stearic acid, oleic acid, erucic acid, Indole-3-acetamide and palmitic acid but positively associated with 6-hydroxymelatonin. In conclusion, a 13.03% CP level improved ruminal morphology, fermentation parameters and digestive enzyme activities through modulating the microbial community and regulating metabolism in Tibetan sheep.

6.
Antioxidants (Basel) ; 13(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39199138

RESUMEN

Previous research studies confirmed that both resveratrol (RES) and ß-hydroxy-ß-methyl butyric acid (HMB) improved growth performance by altering intestinal microbiota. However, the mechanism underlying of RES and HMB on intestinal function remains unclear in ruminant. In this study, supplements of RES and HMB alone or in combination were evaluated as promoters of antioxidant capacity, immune response and barrier function, and modulators of the microbiota and metabolite profiles in the jejunum of Tibetan sheep. A total of 120 two-month-old Tibetan rams were randomly divided into four treatments (n = 30 per treatment), which were supplemented with a basal diet with 1.5 g RES/d (RES group), 1.25 g HMB/d (HMB group), 1.5 g RES/d plus 1.25 g HMB/d (RES-HMB group), and without additions (Control group). The results showed that RES and HMB improved the antioxidant capacity (CAT, GSH-Px, SOD, and T-AOC), immunity (IgA, IgG, and IgM), and digestive enzyme activity (α-amylase, lipase, and chymotrypsin) of the experimental lambs (p < 0.05). Additionally, jejunal morphology including villus width, villus height, and muscle layer thickness exhibited a significant difference when rams were fed diets supplemented with RES and HMB (p < 0.05). Furthermore, the determination of fermentation parameters showed that the butyrate concentration in the RES-HMB group was greater than those in the C and RES groups (p < 0.05). When compared to the C group, barrier-related gene expression (MUC-2, ZO-1, and IL-10) was significantly increased in the RES-HMB group (p < 0.05). Dietary RES and (or) HMB supplementation significantly increased the abundance of Methanobrevibacter, Actinobacteriota and Bacillus (p < 0.05). The abundance of differential bacteria was positively associated with butyrate concentration (p < 0.05). Metabolome analysis revealed that alpha ketoglutarate, succinic semialdehyde, and diacetyl as well as butanoate metabolism pathways connected to the improvements in butyrate concentration by RES and (or) HMB supplementation. Collectively, our results suggested that RES and (or) HMB supplementation improved butyrate concentration via regulating the microbial community (Methanobrevibacter, Actinobacteriota and Bacillus) and metabolism (alpha ketoglutarate, succinic semialdehyde, and diacetyl), thus contributing to jejunal morphology, antioxidant capacity, immune response, digestive enzyme activity, and barrier function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA