Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38634689

RESUMEN

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

2.
J Phys Chem A ; 126(35): 5924-5931, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36036969

RESUMEN

Hybrid density functional (HDF) approximations usually deliver higher accuracy than local and semilocal approximations to the exchange-correlation functional, but this comes with drastically increased computational cost. Practical implementations of HDFs inevitably involve numerical approximations─even more so than their local and semilocal counterparts due to the additional numerical complexity arising from treating the exact-exchange component. This raises the question regarding the reproducibility of the HDF results yielded by different implementations. In this work, we benchmark the numerical precision of four independent implementations of the popular Heyd-Scuseria-Ernzerhof (HSE) range-separated HDF on describing key materials' properties, including both properties derived from equations of state (EOS) and band gaps of 20 crystalline solids. We find that the energy band gaps obtained by the four codes agree with each other rather satisfactorily. However, for lattice constants and bulk moduli, the deviations between the results computed by different codes are of the same order of magnitude as the deviations between the computational and experimental results. On the one hand, this means that the HSE functional is rather accurate for describing the cohesive properties of simple insulating solids. On the other hand, this also suggests that the numerical precision achieved with current major HSE implementations is not sufficiently high to unambiguously assess the physical accuracy of HDFs. It is found that the pseudopotential treatment of the core electrons is a major factor that contributes to this uncertainty.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA