Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(6): e1010781, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37267426

RESUMEN

Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.


Asunto(s)
Proteínas de Homeodominio , Somitos , Ratones , Animales , Proteínas de Homeodominio/metabolismo , Diferenciación Celular/genética , Somitos/metabolismo , Desarrollo de Músculos/genética , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo
2.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227576

RESUMEN

The tongue is a highly specialized muscular organ with diverse cellular origins, which provides an excellent model for understanding mechanisms controlling tissue-tissue interactions during organogenesis. Previous studies showed that SHH signaling is required for tongue morphogenesis and tongue muscle organization, but little is known about the underlying mechanisms. Here we demonstrate that the Foxf1/Foxf2 transcription factors act in the cranial neural crest cell (CNCC)-derived mandibular mesenchyme to control myoblast migration into the tongue primordium during tongue initiation, and thereafter continue to regulate intrinsic tongue muscle assembly and lingual tendon formation. We performed chromatin immunoprecipitation sequencing analysis and identified Hgf, Tgfb2 and Tgfb3 among the target genes of Foxf2 in the embryonic tongue. Through genetic analyses of mice with CNCC-specific inactivation of Smo or both Foxf1 and Foxf2, we show that Foxf1 and Foxf2 mediate hedgehog signaling-mediated regulation of myoblast migration during tongue initiation and intrinsic tongue muscle formation by regulating the activation of the HGF and TGFß signaling pathways. These data uncover the molecular network integrating the SHH, HGF and TGFß signaling pathways in regulating tongue organogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Ratones , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Organogénesis/genética , Lengua , Transducción de Señal/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
3.
Dev Dyn ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481039

RESUMEN

BACKGROUND: Disruption of ALX4 causes autosomal dominant parietal foramina and autosomal recessive frontonasal dysplasia with alopecia, but the mechanisms involving ALX4 in craniofacial and other developmental processes are not well understood. Although mice carrying distinct mutations in Alx4 have been previously reported, the perinatal lethality of homozygous mutants together with dynamic patterns of Alx4 expression in multiple tissues have hindered systematic elucidation of the cellular and molecular mechanisms involving Alx4 in organogenesis and disease pathogenesis. RESULTS: We report generation of Alx4f/f conditional mice and show that tissue-specific Cre-mediated inactivation of Alx4 in cranial neural crest and limb bud mesenchyme, respectively, recapitulated craniofacial and limb developmental defects as found in Alx4-null mice but without affecting postnatal survival. While Alx4-null mice that survive postnatally exhibited dorsal alopecia, mice lacking Alx4 function in the neural crest lineage exhibited a highly restricted region of hair loss over the anterior skull whereas mice lacking Alx4 in the cranial mesoderm lineage exhibited normal hair development, suggesting that Alx4 plays partly redundant roles in multiple cell lineages during hair follicle development. CONCLUSION: The Alx4f/f mice provide a valuable resource for systematic investigation of cell type- and stage-specific function of ALX family transcription factors in development and disease.

4.
Dev Biol ; 503: 1-9, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37524195

RESUMEN

The evolution of jaws has played a major role in the success of vertebrate expansion into a wide variety of ecological niches. A fundamental, yet unresolved, question in craniofacial biology is about the origin of the premaxilla, the most distal bone present in the upper jaw of all amniotes. Recent reports have suggested that the mammalian premaxilla is derived from embryonic maxillary prominences rather than the frontonasal ectomesenchyme as previously shown in studies of chicken embryos. However, whether mammalian embryonic frontonasal ectomesenchyme contributes to the premaxillary bone has not been investigated and a tool to trace the contributions of the frontonasal ectomesenchyme to facial structures in mammals is lacking. The expression of the Alx3 gene is activated highly specifically in the frontonasal ectomesenchyme, but not in the maxillary mesenchyme, from the beginning of facial morphogenesis in mice. Here, we report the generation and characterization of a novel Alx3CreERT2 knock-in mouse line that express tamoxifen-inducible Cre DNA recombinase from the Alx3 locus. Tamoxifen treatment of Alx3CreERT2/+;Rosa26mTmG/+ embryos at E7.5, E8.5, E9.5, and E10.5, each induced specific labeling of the embryonic medial nasal and lateral nasal mesenchyme but not the maxillary mesenchyme. Lineage tracing of Alx3CreERT2-labeled frontonasal mesenchyme from E9.5 to E16.5 clearly showed that the frontonasal mesenchyme cells give rise to the osteoblasts generating the premaxillary bone. Furthermore, we characterize a Dlx1-Cre BAC transgenic mouse line that expresses Cre activity in the embryonic maxillary but not the frontonasal mesenchyme and show that the Dlx1-Cre labeled embryonic maxillary mesenchyme cells contribute to the maxillary bone as well as the soft tissues lateral to both the premaxillary and maxillary bones but not to the premaxillary bone. These results clearly demonstrate the developmental origin of the premaxillary bone from embryonic frontonasal ectomesenchyme cells in mice and confirm the evolutionary homology of the premaxilla across amniotes.


Asunto(s)
Cabeza , Factores de Transcripción , Embrión de Pollo , Ratones , Animales , Factores de Transcripción/genética , Cara , Huesos Faciales , Ratones Transgénicos , Mamíferos
5.
Differentiation ; 133: 60-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37481904

RESUMEN

Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.


Asunto(s)
Proteínas Hedgehog , Holoprosencefalia , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Cresta Neural/metabolismo , Holoprosencefalia/genética , Holoprosencefalia/metabolismo , Morfogénesis/genética , Transducción de Señal/genética
6.
Dev Dyn ; 250(4): 562-573, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33034111

RESUMEN

BACKGROUND: Previous studies showed that mice lacking Fgf18 function had cleft palate defects and that the FGF18 locus was associated with cleft lip and palate in humans, but what specific roles Fgf18 plays during palatogenesis are unclear. RESULTS: We show that Fgf18 exhibits regionally restricted expression in developing palatal shelves, mandible, and tongue, during palatal outgrowth and fusion in mouse embryos. Tissue-specific inactivation of Fgf18 throughout neural crest-derived craniofacial mesenchyme caused shortened mandible and reduction in ossification of the frontal, nasal, and anterior cranial base skeletal elements in Fgf18c/c ;Wnt1-Cre mutant mice. About 64% of Fgf18c/c ;Wnt1-Cre mice exhibited cleft palate. Whereas palatal shelf elevation was impaired in many Fgf18c/c ;Wnt1-Cre embryos, no significant difference in palatal cell proliferation was detected between Fgf18c/c ;Wnt1-Cre embryos and their control littermates. Embryonic maxillary explants from Fgf18c/c ;Wnt1-Cre embryos showed successful palatal shelf elevation and fusion in organ culture similar to the maxillary explants from control embryos. Furthermore, tissue-specific inactivation of Fgf18 in the early palatal mesenchyme did not cause cleft palate. CONCLUSION: These results demonstrate a critical role for Fgf18 expression in the neural crest-derived mesenchyme for the development of the mandible and multiple craniofacial bones but Fgf18 expression in the palatal mesenchyme is dispensable for palatogenesis.


Asunto(s)
Fisura del Paladar/etiología , Factores de Crecimiento de Fibroblastos/fisiología , Hueso Paladar/embriología , Animales , Femenino , Masculino , Mandíbula/embriología , Mandíbula/metabolismo , Mesodermo/metabolismo , Ratones Noqueados , Micrognatismo/etiología , Cresta Neural/fisiología , Hueso Paladar/metabolismo
7.
J Cell Physiol ; 236(1): 480-488, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32537777

RESUMEN

Tooth root development occurs through the interaction of multiple growth factors and transcription factors expressed in Hertwig's epithelial root sheath (HERS) and dental mesenchyme. Previously, we demonstrated that bobby sox homolog (Bbx) regulates odontoblast differentiation of human dental pulp stem cells. Here, we generated Bbx knockout (Bbx-/- ) mice to address the functional role of Bbx in tooth formation. During tooth development, Bbx was expressed in both dental epithelium and mesenchyme. However, molar and incisor morphology in Bbx-/- mice at postnatal Day 0 (P0) exhibited no prominent abnormalities compared with their wild-type (Bbx+/+ ) littermates. Until P28, the crown morphology in Bbx-/- mice was not distinctively different from Bbx+/+ littermates. Meanwhile, the length of the mandibular base in Bbx-/- mice was notably less at P28. Compared with Bbx+/+ mice, the mesial and distal root lengths of the first molar were reduced by 21.33% and 16.28% at P14 and 16.28% and 16.24% at P28, respectively, in Bbx-/- mice. The second molar of Bbx-/- mice also showed 10.16% and 6.4% reductions at P28 in the mesial and distal lengths, compared with Bbx+/+ mice, respectively. The gene expression analysis during early tooth root formation (P13) showed that the expression of dentin sialophosphoprotein (Dspp) was significantly decreased in Bbx-/- mice. Collectively, our data suggest that Bbx participates in tooth root formation and might be associated with the regulation of Dspp expression.


Asunto(s)
Dentina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Diente Molar/metabolismo , Odontogénesis/fisiología , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Epitelio/metabolismo , Femenino , Masculino , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Diente Molar/crecimiento & desarrollo , Odontoblastos/metabolismo , Factores de Transcripción/metabolismo
8.
Genesis ; 58(7): e23365, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32277572

RESUMEN

Heterozygous deletion of Six2, which encodes a member of sine oculis homeobox family transcription factors, has recently been associated with the frontonasal dysplasia syndrome FND4. Previous studies showed that Six2 is expressed in multiple tissues during craniofacial development in mice, including embryonic head mesoderm, postmigratory frontonasal neural crest cells, and epithelial and mesenchymal cells of the developing palate and nasal structures. Whereas Six2 -/- mice exhibited cranial base defects but did not recapitulate frontonasal phenotypes of FND4 patients, Six1 -/- Six2 -/- double mutant mice showed severe craniofacial defects including midline facial clefting. The complex phenotypes of FND4 patients and of Six1 -/- Six2 -/- mutant mice indicate that Six2 plays crucial roles in distinct cell types at multiple stages of craniofacial morphogenesis. Here we report generation of mice carrying insertions of a pair of loxP sites flanking exon-1 of the Six2 gene (Six2 f allele) using CRISPR/Cas9-mediated genome editing. We show that the Six2 f allele functions normally and is effectively inactivated by Cre-mediated recombination in vivo. Furthermore, we show that Six2 f/f ;Wnt1-Cre mice recapitulated cranial base defects but not neonatal lethality of Six2 -/- mice. These results indicate that Six2 f/f mice enable systematic investigation of cell type- and stage-specific Six2 function in development and disease.


Asunto(s)
Anomalías Craneofaciales/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Sistemas CRISPR-Cas , Anomalías Craneofaciales/patología , Femenino , Edición Génica/métodos , Marcación de Gen/métodos , Proteínas de Homeodominio/metabolismo , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Factores de Transcripción/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
10.
Development ; 143(13): 2344-55, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226319

RESUMEN

Cleft palate is a common major birth defect for which currently known causes account for less than 30% of pathology in humans. In this study, we carried out mutagenesis screening in mice to identify new regulators of palatogenesis. Through genetic linkage mapping and whole-exome sequencing, we identified a loss-of-function mutation in the Golgb1 gene that co-segregated with cleft palate in a new mutant mouse line. Golgb1 is a ubiquitously expressed large coiled-coil protein, also known as giantin, that is localized at the Golgi membrane. Using CRISPR/Cas9-mediated genome editing, we generated and analyzed developmental defects in mice carrying additional Golgb1 loss-of-function mutations, which supported a crucial requirement for Golgb1 in palate development. Through maxillary explant culture assays, we demonstrate that the Golgb1 mutant embryos have intrinsic defects in palatal shelf elevation. Just prior to the developmental stage of palatal shelf elevation in wild-type littermates, Golgb1 mutant embryos exhibit increased cell density, reduced hyaluronan accumulation and impaired protein glycosylation in the palatal mesenchyme. Together, these results demonstrate that, although it is a ubiquitously expressed Golgi-associated protein, Golgb1 has specific functions in protein glycosylation and tissue morphogenesis.


Asunto(s)
Mamíferos/embriología , Proteínas de la Membrana/metabolismo , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Recuento de Células , Fisura del Paladar/genética , Embrión de Mamíferos/metabolismo , Etilnitrosourea , Femenino , Técnica del Anticuerpo Fluorescente , Genoma , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Matriz de Golgi , Ácido Hialurónico/metabolismo , Lectinas/metabolismo , Proteínas de la Membrana/genética , Mesodermo/citología , Mesodermo/embriología , Ratones Mutantes , Mutación/genética , Edición de ARN/genética , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
PLoS Genet ; 12(1): e1005769, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26745863

RESUMEN

Cleft palate is among the most common birth defects in humans. Previous studies have shown that Shh signaling plays critical roles in palate development and regulates expression of several members of the forkhead-box (Fox) family transcription factors, including Foxf1 and Foxf2, in the facial primordia. Although cleft palate has been reported in mice deficient in Foxf2, whether Foxf2 plays an intrinsic role in and how Foxf2 regulates palate development remain to be elucidated. Using Cre/loxP-mediated tissue-specific gene inactivation in mice, we show that Foxf2 is required in the neural crest-derived palatal mesenchyme for normal palatogenesis. We found that Foxf2 mutant embryos exhibit altered patterns of expression of Shh, Ptch1, and Shox2 in the developing palatal shelves. Through RNA-seq analysis, we identified over 150 genes whose expression was significantly up- or down-regulated in the palatal mesenchyme in Foxf2-/- mutant embryos in comparison with control littermates. Whole mount in situ hybridization analysis revealed that the Foxf2 mutant embryos exhibit strikingly corresponding patterns of ectopic Fgf18 expression in the palatal mesenchyme and concomitant loss of Shh expression in the palatal epithelium in specific subdomains of the palatal shelves that correlate with where Foxf2, but not Foxf1, is expressed during normal palatogenesis. Furthermore, tissue specific inactivation of both Foxf1 and Foxf2 in the early neural crest cells resulted in ectopic activation of Fgf18 expression throughout the palatal mesenchyme and dramatic loss of Shh expression throughout the palatal epithelium. Addition of exogenous Fgf18 protein to cultured palatal explants inhibited Shh expression in the palatal epithelium. Together, these data reveal a novel Shh-Foxf-Fgf18-Shh circuit in the palate development molecular network, in which Foxf1 and Foxf2 regulate palatal shelf growth downstream of Shh signaling, at least in part, by repressing Fgf18 expression in the palatal mesenchyme to ensure maintenance of Shh expression in the palatal epithelium.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Factores de Transcripción Forkhead/genética , Proteínas Hedgehog/genética , Hueso Paladar/crecimiento & desarrollo , Animales , Fisura del Paladar/genética , Fisura del Paladar/patología , Desarrollo Embrionario/genética , Factores de Crecimiento de Fibroblastos/biosíntesis , Factores de Transcripción Forkhead/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/biosíntesis , Humanos , Ratones , Cresta Neural/crecimiento & desarrollo , Hueso Paladar/metabolismo
12.
Dev Biol ; 427(1): 72-83, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501478

RESUMEN

During early fetal development, paracrine Hedgehog (HH) ligands secreted from the foregut epithelium activate Gli transcription factors in the surrounding mesenchyme to coordinate formation of the respiratory system, digestive track and the cardiovascular network. Although disruptions to this process can lead to devastating congenital defects, the underlying mechanisms and downstream targets, are poorly understood. We show that the zinc finger transcription factor Osr1 is a novel HH target as Osr1 expression in the foregut mesenchyme depends on HH signaling and the effector of HH pathway Gli3 binds to a conserved genomic loci near Osr1 promoter region. Molecular analysis of mouse germline Osr1 mutants reveals multiple functions of Osr1 during foregut development. Osr1 mutants exhibit fewer lung progenitors in the ventral foregut. Osr is then required for the proper branching of the primary lung buds, with mutants exhibiting miss-located lung lobes. Finally, Osr1 is essential for proper mesenchymal differentiation including pulmonary arteries, esophageal and tracheal smooth muscle as well as tracheal cartilage rings. Tissue specific conditional knockouts in combination with lineage tracing indicate that Osr1 is required cell autonomously in the foregut mesenchyme. We conclude that Osr1 is a novel downstream target of HH pathway, required for lung specification, branching morphogenesis and foregut mesenchymal differentiation.


Asunto(s)
Sistema Digestivo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Organogénesis/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Animales , Sistema Digestivo/embriología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Proteínas Hedgehog/metabolismo , Inmunohistoquímica , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
13.
Dev Biol ; 420(1): 110-119, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27713059

RESUMEN

Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1-/- mice exhibit developmental arrest of all tooth germs at the bud stage, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1-/- and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1-/- and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of DKKs in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of DKKs or inactivation of Sfrp2 alone was insufficient to rescue tooth morphogenesis in Msx1-/- mice, pharmacological inhibition of DKKs in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1-/- mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway and Osr2 control tooth organogenesis through antagonistic regulation of expression of secreted Wnt antagonists.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factor de Transcripción MSX1/metabolismo , Proteínas de la Membrana/metabolismo , Organogénesis , Transducción de Señal , Diente/embriología , Proteínas Wnt/antagonistas & inhibidores , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/genética , Cloruro de Litio/farmacología , Mandíbula/efectos de los fármacos , Mandíbula/embriología , Mandíbula/metabolismo , Proteínas de la Membrana/genética , Ratones Noqueados , Diente Molar/efectos de los fármacos , Diente Molar/embriología , Diente Molar/metabolismo , Morfogénesis/efectos de los fármacos , Organogénesis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Diente/efectos de los fármacos , Diente/metabolismo , Germen Dentario/efectos de los fármacos , Germen Dentario/embriología , Germen Dentario/metabolismo , Factores de Transcripción , Proteínas Wnt/metabolismo
14.
Development ; 141(7): 1442-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598167

RESUMEN

Mammalian kidney organogenesis involves reciprocal epithelial-mesenchymal interactions that drive iterative cycles of nephron formation. Recent studies have demonstrated that the Six2 transcription factor acts cell autonomously to maintain nephron progenitor cells, whereas canonical Wnt signaling induces nephron differentiation. How Six2 maintains the nephron progenitor cells against Wnt-directed commitment is not well understood, however. We report here that Six2 is required to maintain expression of Osr1, a homolog of the Drosophila odd-skipped zinc-finger transcription factor, in the undifferentiated cap mesenchyme. Tissue-specific inactivation of Osr1 in the cap mesenchyme caused premature depletion of nephron progenitor cells and severe renal hypoplasia. We show that Osr1 and Six2 act synergistically to prevent premature differentiation of the cap mesenchyme. Furthermore, although both Six2 and Osr1 could form protein interaction complexes with TCF proteins, Osr1, but not Six2, enhances TCF interaction with the Groucho family transcriptional co-repressors. Moreover, we demonstrate that loss of Osr1 results in ß-catenin/TCF-mediated ectopic activation of Wnt4 enhancer-driven reporter gene expression in the undifferentiated nephron progenitor cells in vivo. Together, these data indicate that Osr1 plays crucial roles in Six2-dependent maintenance of nephron progenitors during mammalian nephrogenesis by stabilizing TCF-Groucho transcriptional repressor complexes to antagonize Wnt-directed nephrogenic differentiation.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Riñón/embriología , Nefronas/embriología , Organogénesis/genética , Células Madre/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/genética , Embrión de Mamíferos , Femenino , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nefronas/citología , Nefronas/metabolismo , Unión Proteica , Transducción de Señal/genética , Células Madre/citología
15.
Semin Cell Dev Biol ; 25-26: 61-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24355560

RESUMEN

Four conserved signaling pathways, including the bone morphogenetic proteins (Bmp), fibroblast growth factors (Fgf), sonic hedgehog (Shh), and wingless-related (Wnt) pathways, are each repeatedly used throughout tooth development. Inactivation of any of these resulted in early tooth developmental arrest in mice. The mutations identified thus far in human patients with tooth agenesis also affect these pathways. Recent studies show that these signaling pathways interact through positive and negative feedback loops to regulate not only morphogenesis of individual teeth but also tooth number, shape, and spatial pattern. Increased activity of each of the Fgf, Shh, and canonical Wnt signaling pathways revitalizes development of the physiologically arrested mouse diastemal tooth germs whereas constitutive activation of canonical Wnt signaling in the dental epithelium is able to induce supernumerary tooth formation even in the absence of Msx1 and Pax9, two transcription factors required for normal tooth development beyond the early bud stage. Bmp4 and Msx1 act in a positive feedback loop to drive sequential tooth formation whereas the Osr2 transcription factor restricts Msx1-mediated expansion of the mesenchymal odontogenic field along both the buccolingual and anteroposterior axes to pattern mouse molar teeth in a single row. Moreover, the ectodermal-specific ectodysplasin (EDA) signaling pathway controls tooth number and tooth shape through regulation of Fgf20 expression in the dental epithelium, whereas Shh suppresses Wnt signaling through a negative feedback loop to regulate spatial patterning of teeth. In this article, we attempt to integrate these exciting findings in the understanding of the molecular networks regulating tooth development and patterning.


Asunto(s)
Dentición , Diente/anatomía & histología , Diente/crecimiento & desarrollo , Animales , Humanos , Ratones , Morfogénesis
16.
Dev Biol ; 405(1): 96-107, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26141957

RESUMEN

The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events - from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template - that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage.


Asunto(s)
Fibrocartílago/citología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Minerales/metabolismo , Transducción de Señal , Células Madre/citología , Animales , Médula Ósea/patología , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Huesos/fisiología , Calcificación Fisiológica , Diferenciación Celular , Condrocitos/metabolismo , Células Clonales , Colágeno/metabolismo , Epífisis/patología , Integrasas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Modelos Biológicos , Osteoclastos/metabolismo , Rótula/fisiología , Coloración y Etiquetado , Células Madre/metabolismo , Tendones/fisiología , Proteína con Dedos de Zinc GLI1
17.
Development ; 140(23): 4709-18, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24173808

RESUMEN

Cleft palate is one of the most common birth defects in humans. Whereas gene knockout studies in mice have shown that both the Osr2 and Pax9 transcription factors are essential regulators of palatogenesis, little is known about the molecular mechanisms involving these transcription factors in palate development. We report here that Pax9 plays a crucial role in patterning the anterior-posterior axis and outgrowth of the developing palatal shelves. We found that tissue-specific deletion of Pax9 in the palatal mesenchyme affected Shh expression in palatal epithelial cells, indicating that Pax9 plays a crucial role in the mesenchyme-epithelium interactions during palate development. We found that expression of the Bmp4, Fgf10, Msx1 and Osr2 genes is significantly downregulated in the developing palatal mesenchyme in Pax9 mutant embryos. Remarkably, restoration of Osr2 expression in the early palatal mesenchyme through a Pax9(Osr2KI) allele rescued posterior palate morphogenesis in the absence of Pax9 protein function. Our data indicate that Pax9 regulates a molecular network involving the Bmp4, Fgf10, Shh and Osr2 pathways to control palatal shelf patterning and morphogenesis.


Asunto(s)
Tipificación del Cuerpo/genética , Morfogénesis/genética , Factores de Transcripción Paired Box/metabolismo , Hueso Paladar/embriología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Proliferación Celular , Fisura del Paladar/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Factor de Transcripción MSX1/biosíntesis , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción PAX9 , Factores de Transcripción Paired Box/genética , Hueso Paladar/crecimiento & desarrollo , Hueso Paladar/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
18.
Development ; 140(2): 423-32, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250216

RESUMEN

Previous studies have suggested that Bmp4 is a key Msx1-dependent mesenchymal odontogenic signal for driving tooth morphogenesis through the bud-to-cap transition. Whereas all tooth germs were arrested at the bud stage in Msx1(-/-) mice, we show that depleting functional Bmp4 mRNAs in the tooth mesenchyme, through neural crest-specific gene inactivation in Bmp4(f/f);Wnt1Cre mice, caused mandibular molar developmental arrest at the bud stage but allowed maxillary molars and incisors to develop to mineralized teeth. We found that expression of Osr2, which encodes a zinc finger protein that antagonizes Msx1-mediated activation of odontogenic mesenchyme, was significantly upregulated in the molar tooth mesenchyme in Bmp4(f/f);Wnt1Cre embryos. Msx1 heterozygosity enhanced maxillary molar developmental defects whereas Osr2 heterozygosity partially rescued mandibular first molar morphogenesis in Bmp4(f/f);Wnt1Cre mice. Moreover, in contrast to complete lack of supernumerary tooth initiation in Msx1(-/-)Osr2(-/-) mice, Osr2(-/-)Bmp4(f/f);Wnt1Cre compound mutant mice exhibited formation and subsequent arrest of supernumerary tooth germs that correlated with downregulation of Msx1 expression in the tooth mesenchyme. In addition, we found that the Wnt inhibitors Dkk2 and Wif1 were much more abundantly expressed in the mandibular than maxillary molar mesenchyme in wild-type embryos and that Dkk2 expression was significantly upregulated in the molar mesenchyme in Bmp4(f/f);Wnt1Cre embryos, which correlated with the dramatic differences in maxillary and mandibular molar phenotypes in Bmp4(f/f);Wnt1Cre mice. Together, these data indicate that Bmp4 signaling suppresses tooth developmental inhibitors in the tooth mesenchyme, including Dkk2 and Osr2, and synergizes with Msx1 to activate mesenchymal odontogenic potential for tooth morphogenesis and sequential tooth formation.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diente/embriología , Animales , Heterocigoto , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Ratones , Ratones Transgénicos , Microscopía Fluorescente/métodos , Morfogénesis/genética , Mutación , Odontogénesis/genética , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/metabolismo , Dedos de Zinc
19.
Proc Natl Acad Sci U S A ; 110(46): 18555-60, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24167250

RESUMEN

The tongue is a critical element of the feeding system in tetrapod animals for their successful adaptation to terrestrial life. Whereas the oral part of the mammalian tongue contains soft tissues only, the avian tongue has an internal skeleton extending to the anterior tip. The mechanisms underlying the evolutionary divergence in tongue skeleton formation are completely unknown. We show here that the odd-skipped related-1 (Osr1) transcription factor is expressed throughout the neural crest-derived tongue mesenchyme in mouse, but not in chick, embryos during early tongue morphogenesis. Neural crest-specific inactivation of Osr1 resulted in formation of an ectopic cartilage in the mouse tongue, reminiscent in shape and developmental ontogeny of the anterior tongue cartilage in chick. SRY-box containing gene-9 (Sox9), the master regulator of chondrogenesis, is widely expressed in the nascent tongue mesenchyme at the onset of tongue morphogenesis but its expression is dramatically down-regulated concomitant with activation of Osr1 expression in the developing mouse tongue. In Osr1 mutant mouse embryos, expression of Sox9 persisted in the developing tongue mesenchyme where chondrogenesis is subsequently activated to form the ectopic cartilage. Furthermore, we show that Osr1 binds to the Sox9 gene promoter and that overexpression of Osr1 suppressed expression of endogenous Sox9 mRNAs and Sox9 promoter-driven reporter. These data indicate that Osr1 normally prevents chondrogenesis in the mammalian tongue through repression of Sox9 expression and suggest that changes in regulation of Osr1 expression in the neural crest-derived tongue mesenchyme underlie the evolutionary divergence of birds from other vertebrates in tongue morphogenesis.


Asunto(s)
Evolución Biológica , Condrogénesis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Cresta Neural/fisiología , Lengua/embriología , Factores de Transcripción/metabolismo , Animales , Embrión de Pollo , Galactósidos , Hibridación in Situ , Indoles , Luciferasas , Ratones , Ratones Transgénicos , Cresta Neural/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/metabolismo , Análisis de Secuencia de ARN , Especificidad de la Especie , Lengua/metabolismo , beta-Galactosidasa/metabolismo
20.
Development ; 139(2): 231-43, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22186724

RESUMEN

Mammalian palatogenesis is a highly regulated morphogenetic process during which the embryonic primary and secondary palatal shelves develop as outgrowths from the medial nasal and maxillary prominences, respectively, remodel and fuse to form the intact roof of the oral cavity. The complexity of control of palatogenesis is reflected by the common occurrence of cleft palate in humans. Although the embryology of the palate has long been studied, the past decade has brought substantial new knowledge of the genetic control of secondary palate development. Here, we review major advances in the understanding of the morphogenetic and molecular mechanisms controlling palatal shelf growth, elevation, adhesion and fusion, and palatal bone formation.


Asunto(s)
Fisura del Paladar/genética , Mamíferos , Morfogénesis/genética , Morfogénesis/fisiología , Hueso Paladar/embriología , Animales , Fisura del Paladar/fisiopatología , Modelos Biológicos , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA