Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 600(7890): 641-646, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34937897

RESUMEN

Electron correlation and topology are two central threads of modern condensed matter physics. Semiconductor moiré materials provide a highly tuneable platform for studies of electron correlation1-12. Correlation-driven phenomena, including the Mott insulator2-5, generalized Wigner crystals2,6,9, stripe phases10 and continuous Mott transition11,12, have been demonstrated. However, non-trivial band topology has remained unclear. Here we report the observation of a quantum anomalous Hall effect in AB-stacked MoTe2 /WSe2 moiré heterobilayers. Unlike in the AA-stacked heterobilayers11, an out-of-plane electric field not only controls the bandwidth but also the band topology by intertwining moiré bands centred at different layers. At half band filling, corresponding to one particle per moiré unit cell, we observe quantized Hall resistance, h/e2 (with h and e denoting the Planck's constant and electron charge, respectively), and vanishing longitudinal resistance at zero magnetic field. The electric-field-induced topological phase transition from a Mott insulator to a quantum anomalous Hall insulator precedes an insulator-to-metal transition. Contrary to most known topological phase transitions13, it is not accompanied by a bulk charge gap closure. Our study paves the way for discovery of emergent phenomena arising from the combined influence of strong correlation and topology in semiconductor moiré materials.

2.
Nature ; 597(7876): 350-354, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526709

RESUMEN

The evolution of a Landau Fermi liquid into a non-magnetic Mott insulator with increasing electronic interactions is one of the most puzzling quantum phase transitions in physics1-6. The vicinity of the transition is believed to host exotic states of matter such as quantum spin liquids4-7, exciton condensates8 and unconventional superconductivity1. Semiconductor moiré materials realize a highly controllable Hubbard model simulator on a triangular lattice9-22, providing a unique opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the electronic interactions. Here, by electrically tuning the effective interaction strength in MoTe2/WSe2 moiré superlattices, we observe a continuous MIT at a fixed filling of one electron per unit cell. The existence of quantum criticality is supported by the scaling collapse of the resistance, a continuously vanishing charge gap as the critical point is approached from the insulating side, and a diverging quasiparticle effective mass from the metallic side. We also observe a smooth evolution of the magnetic susceptibility across the MIT and no evidence of long-range magnetic order down to ~5% of the Curie-Weiss temperature. This signals an abundance of low-energy spinful excitations on the insulating side that is further corroborated by the Pomeranchuk effect observed on the metallic side. Our results are consistent with the universal critical theory of a continuous Mott transition in two dimensions4,23.

3.
Nat Mater ; 22(1): 50-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396963

RESUMEN

Layered α-RuCl3 is a promising material to potentially realize the long-sought Kitaev quantum spin liquid with fractionalized excitations. While evidence of this state has been reported under a modest in-plane magnetic field, such behaviour is largely inconsistent with theoretical expectations of spin liquid phases emerging only in out-of-plane fields. These predicted field-induced states have been largely out of reach due to the strong easy-plane anisotropy of bulk crystals, however. We use a combination of tunnelling spectroscopy, magnetotransport, electron diffraction and ab initio calculations to study the layer-dependent magnons, magnetic anisotropy, structure and exchange coupling in atomically thin samples. Due to picoscale distortions, the sign of the average off-diagonal exchange changes in monolayer α-RuCl3, leading to a reversal of spin anisotropy to easy-axis anisotropy, while the Kitaev interaction is concomitantly enhanced. Our work opens the door to the possible exploration of Kitaev physics in the true two-dimensional limit.


Asunto(s)
Electrones , Campos Magnéticos , Anisotropía
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473968

RESUMEN

The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.


Asunto(s)
MicroARNs , Receptores de Ghrelina , Femenino , Humanos , Antígeno Nuclear de Célula en Proliferación , MicroARNs/genética , Apoptosis/genética , Proliferación Celular/genética , Luciferasas , Línea Celular Tumoral
5.
Proc Natl Acad Sci U S A ; 116(23): 11131-11136, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110023

RESUMEN

We conduct a comprehensive study of three different magnetic semiconductors, CrI3, CrBr3, and CrCl3, by incorporating both few-layer and bilayer samples in van der Waals tunnel junctions. We find that the interlayer magnetic ordering, exchange gap, magnetic anisotropy, and magnon excitations evolve systematically with changing halogen atom. By fitting to a spin wave theory that accounts for nearest-neighbor exchange interactions, we are able to further determine a simple spin Hamiltonian describing all three systems. These results extend the 2D magnetism platform to Ising, Heisenberg, and XY spin classes in a single material family. Using magneto-optical measurements, we additionally demonstrate that ferromagnetism can be stabilized down to monolayer in more isotropic CrBr3, with transition temperature still close to that of the bulk.

6.
Nano Lett ; 21(12): 5045-5052, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34106709

RESUMEN

Two-dimensional (2D) magnetic materials have attracted much recent interest with unique properties emerging at the few-layer limit. Beyond the reported impacts on the static magnetic properties, the effects of reducing the dimensionality on the magnetization dynamics are also of fundamental interest and importance for 2D device development. In this report, we investigate the spin dynamics in atomically thin antiferromagnetic FePS3 of varying layer numbers using ultrafast pump-probe spectroscopy. Following the absorption of an optical pump pulse, the time evolution of the antiferromagnetic order parameter is probed by magnetic linear birefringence. We observe a strong divergence in the demagnetization time near the Néel temperature. The divergence can be characterized by a power-law dependence on the reduced temperature, with an exponent decreasing with sample thickness. We compare our results to expectations from critical slowing down and a two-temperature model involving spins and phonons and discuss the possible relevance of spin-substrate phonon interactions.

7.
Nano Lett ; 21(6): 2538-2543, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33720731

RESUMEN

The strong excitonic effect in monolayer transition metal dichalcogenide (TMD) semiconductors has enabled many fascinating light-matter interaction phenomena. Examples include strongly coupled exciton-polaritons and nearly perfect atomic monolayer mirrors. The strong light-matter interaction also opens the door for dynamical control of mechanical motion through the exciton resonance of monolayer TMDs. Here, we report the observation of exciton-optomechanical coupling in a suspended monolayer MoSe2 mechanical resonator. By moderate optical pumping near the MoSe2 exciton resonance, we have observed optical damping and antidamping of mechanical vibrations as well as the optical spring effect. The exciton-optomechanical coupling strength is also gate-tunable. Our observations can be understood in a model based on photothermal backaction and gate-induced mirror symmetry breaking in the device structure. The observation of gate-tunable exciton-optomechanical coupling in a monolayer semiconductor may find applications in nanoelectromechanical systems (NEMS) and in exciton-optomechanics.

8.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887373

RESUMEN

Acquired drug resistance decreases the efficacy of gefitinib after approximately 1 year of treatment in non-small-cell lung cancer (NSCLC). Autophagy is a process that could lead to cell death when it is prolonged. Thus, we investigated a drug combination therapy of gefitinib with rapamycin-a cell autophagy activator-in gefitinib-resistant NSCLC cell line H1975 to improve the therapeutic efficacy of gefitinib in advanced NSCLC cells through acute cell autophagy induction. Cell viability and tumor formation assays indicated that rapamycin is strongly synergistic with gefitinib inhibition, both in vitro and in vivo. Mechanistic studies demonstrated that EGFR expression and cell autophagy decreased under gefitinib treatment and were restored after the drug combination therapy, indicating a potential cell autophagy-EGFR positive feedback regulation. To further optimize the delivery efficiency of the combinational agents, we constructed an anti-EGFR aptamer-functionalized nanoparticle (NP-Apt) carrier system. The microscopic observation and cell proliferation assays suggested that NP-Apt achieved remarkably targeted delivery and cytotoxicity in the cancer cells. Taken together, our results suggest that combining rapamycin and gefitinib can be an efficacious therapy to overcome gefitinib resistance in NSCLC, and targeted delivery of the drugs using the aptamer-nanoparticle carrier system further enhances the therapeutic efficacy of gefitinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Autofagia , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Combinación de Medicamentos , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Humanos , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/uso terapéutico , Sirolimus/farmacología , Sirolimus/uso terapéutico
9.
BMC Genomics ; 22(1): 524, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243706

RESUMEN

BACKGROUND: Recently, pine wood nematode (PWN, Bursaphelenchus xylophilus) has been found in the extreme cold area of northeast China. The third-stage dispersal juvenile (DJ3) of PWN, which is a long-lived stress-resistant stage, plays an important role in the process of PWN spreading to low-temperature areas, as this stage can survive under unfavorable conditions. RESULTS: Weighted correlation network analysis (WGCNA) was used to analyze the expression patterns of 15,889 genes included in 21 RNA-Seq results of PWN at DJ3 and the other 6 different stages, and a total of 12 coexpression modules were obtained. Among them, the magenta module has the highest correlation with DJ3, which included a total of 652 genes. KEGG enrichment analysis showed that most of the genes in the magenta module were involved in metabolic processes, which were related to autophagy and longevity regulation. These pathways included starch and sucrose metabolism, which contains trehalose metabolism. To explore the function of trehalose in DJ3 formation and survival under - 20 °C, a trehalose-6-phosphate synthase encoding gene (Bx-tps), a trehalose-6-phosphate phosphatase encoding gene (Bx-tpp) and 7 trehalase encoding genes (Bx-tres) were identified and investigated. The expression of these 9 genes was related to the formation of DJ3. A treatment under - 20 °C induced the accumulation of trehalose. The survival rate of DJ3 at -20 °C reduced after silencing of any of these trehalose metabolism genes. Further analysis suggested that two trehalose synthesis genes were highly correlated with DJ3 and might be involved in autophagy by regulating with energy conversion related genes. CONCLUSIONS: The above results indicated that trehalose metabolism promotes DJ3 formation and helps DJ3 survive at -20 °C. Although trehalose accumulation is favorable for DJ3 to cope with low-temperature stress, multiple trehalose metabolism genes need to work together. There may be a multi-path regulated physiological process involving trehalose synthesis genes under low-temperature stress resistance. This physiological process may regulate the formation and maintenance of DJ3 through autophagy and energy conversion.


Asunto(s)
Pinus , Tylenchida , Animales , China , Temperatura , Trehalosa
10.
Nat Mater ; 19(12): 1295-1299, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32601481

RESUMEN

Magnetostriction, coupling between the mechanical and magnetic degrees of freedom, finds a variety of applications in magnetic actuation, transduction and sensing1,2. The discovery of two-dimensional layered magnetic materials3-8 presents a new platform to explore the magnetostriction effects in ultrathin solids. Here we demonstrate an exchange-driven magnetostriction effect in mechanical resonators made of two-dimensional antiferromagnetic CrI3. The mechanical resonance frequency is found to depend on the magnetic state of the material. We quantify the relative importance of the exchange and anisotropy magnetostriction by measuring the resonance frequency under a magnetic field parallel and perpendicular to the easy axis, respectively. Furthermore, we show efficient strain-tuning of the internal magnetic interactions in two-dimensional CrI3 as a result of inverse magnetostriction. Our results establish the basis for mechanical detection and control of magnetic states and magnetic phase transitions in two-dimensional layered materials.

11.
Nano Lett ; 20(10): 7482-7488, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32975955

RESUMEN

We report measurements of current-induced thermoelectric and spin-orbit torque effects within devices in which multilayers of the semiconducting two-dimensional van der Waals magnet Cr2Ge2Te6 (CGT) are integrated with Pt and Ta metal overlayers. We show that the magnetic orientation of the CGT can be detected accurately either electrically (using an anomalous Hall effect) or optically (using magnetic circular dichroism) with good consistency. The samples exhibit large thermoelectric effects, but nevertheless, the spin-orbit torque can be measured quantitatively using the angle-dependent second harmonic Hall technique. For CGT/Pt, we measure the spin-orbit torque efficiency to be similar to conventional metallic-ferromagnet/Pt devices with the same Pt resistivity. The interfacial transparency for spin currents is therefore similar in both classes of devices. Our results demonstrate the promise of incorporating semiconducting 2D magnets within spin-orbitronic and magneto-thermal devices.

12.
Small ; 16(22): e2001371, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32338439

RESUMEN

Quantum dots (QDs) have numerous potential applications in lighting, engineering, and biomedicine. QDs are mainly excreted through the kidney due to their ultrasmall sizes; thus, the kidneys are target organs of QD toxicity. Here, an organoid screening platform is established and used to study the nephrotoxicity of QDs. Organoids are templated from monodisperse microfluidic Matrigel droplets and found to be homogeneous in both tissue structure and functional recapitulation within a population and suitable for the quantitative screening of toxic doses. Kidney organoids are proved displaying higher sensitivity than 2D-cultured cell lines. Similar to metal-containing QDs, black phosphorus (BP)-QDs are found to have moderate toxicity in the kidney organoids. The nephrotoxicity of BP-QDs are validated in both mice and human renal tubular epithelial cells. BP-QDs are also found to cause insulin insensitivity and endoplasmic reticulum (ER) stress in the kidney. Furthermore, ER stress-related IRE1α signaling is shown to mediate renal toxicity and insulin insensitivity caused by BP-QDs. In summary, this work demonstrates the use of constructed kidney organoids as 3D high-throughput screening tools to assess nanosafety and further illuminates the effects and molecular mechanisms of BP-QD nephrotoxicity. The findings will hopefully enable improvement of the safety of BP-QD applications.


Asunto(s)
Puntos Cuánticos , Animales , Endorribonucleasas , Humanos , Ratones , Organoides , Fósforo , Proteínas Serina-Treonina Quinasas , Puntos Cuánticos/toxicidad
13.
Nat Mater ; 18(12): 1303-1308, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659292

RESUMEN

Stacking order can influence the physical properties of two-dimensional van der Waals materials1,2. Here we applied hydrostatic pressure up to 2 GPa to modify the stacking order in the van der Waals magnetic insulator CrI3. We observed an irreversible interlayer antiferromagnetic-to-ferromagnetic transition in atomically thin CrI3 by magnetic circular dichroism and electron tunnelling measurements. The effect was accompanied by a monoclinic-to-rhombohedral stacking-order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer antiferromagnetic coupling energy can be tuned up by nearly 100% with pressure. Our experiment reveals the interlayer ferromagnetic ground state, which is established in bulk CrI3 but not observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations3-8 and suggests a route towards nanoscale magnetic textures by moiré engineering3,9.

14.
Nat Mater ; 17(5): 406-410, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29531370

RESUMEN

Controlling magnetism by purely electrical means is a key challenge to better information technology 1 . A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors 5 , multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform 13 . Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state 12 , by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

15.
Nat Mater ; 17(6): 504-508, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29713039

RESUMEN

Time reversal and spatial inversion are two key symmetries for conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity 1 . Breaking inversion symmetry can lead to mixed-parity Cooper pairing and unconventional superconducting properties1-5. Two-dimensional (2D) NbSe2 has emerged as a new non-centrosymmetric superconductor with the unique out-of-plane or Ising spin-orbit coupling (SOC)6-9. Here we report the observation of an unusual continuous paramagnetic-limited superconductor-normal metal transition in 2D NbSe2. Using tunelling spectroscopy under high in-plane magnetic fields, we observe a continuous closing of the superconducting gap at the upper critical field at low temperatures, in stark contrast to the abrupt first-order transition observed in BCS thin-film superconductors10-12. The paramagnetic-limited continuous transition arises from a large spin susceptibility of the superconducting phase due to the Ising SOC. The result is further supported by self-consistent mean-field calculations based on the ab initio band structure of 2D NbSe2. Our findings establish 2D NbSe2 as a promising platform to explore novel spin-dependent superconducting phenomena and device concepts 1 , such as equal-spin Andreev reflection 13 and topological superconductivity14-16.

16.
Nanomedicine ; 15(1): 59-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30244083

RESUMEN

Mitophagy, a selective autophagy of mitochondria, clears up damaged mitochondria to maintain cell homeostasis. We performed high-content analysis (HCA) to detect the increase of PINK1, an essential protein controlling mitophagy, in hepatic cells treated with several nanoparticles (NPs). PINK1 immunofluorescence-based HCA was more sensitive than assays and detections for cell viability and mitochondrial functions. Of which, superparamagnetic iron oxide (SPIO)-NPs or graphene oxide-quantum dots (GO-QDs) was selected as representatives for positive or negative inducer of mitophagy. SPIO-NPs, but not GO-QDs, activated PINK1-dependent mitophagy as demonstrated by recruitment of PARKIN to mitochondria and degradation of injured mitochondria. SPIO-NPs caused the loss of mitochondrial membrane potential, decrease in ATP, and increase in mitochondrial reactive oxide species and Ca2+. Blocking mitophagy with PARKIN siRNA aggravated the cytotoxicity of SPIO-NPs. Taken together, PINK1 immunofluorescence-based HCA is considered to be an early, sensitive, and reliable approach to evaluate the bioimpacts of NPs.


Asunto(s)
Autofagia , Biomarcadores/análisis , Hepatocitos/patología , Mitocondrias/patología , Mitofagia , Nanopartículas/administración & dosificación , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Supervivencia Celular , Células Cultivadas , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanopartículas/química , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo
17.
Nano Lett ; 18(5): 3213-3220, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29658274

RESUMEN

We demonstrate robust optical bistability, the phenomenon of two well-discriminated stable states depending upon the history of the optical input, in fully suspended monolayers of WSe2 at low temperatures near the exciton resonance. Optical bistability has been achieved under continuous-wave optical excitation that is red-detuned from the exciton resonance at an intensity level of 103 W/cm2. The observed bistability is originated from a photothermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. The low thermal conductance of suspended samples is primarily responsible for the low excitation intensities required for optical bistability. Under a finite out-of-plane magnetic field, the exciton bistability becomes helicity dependent due to the exciton valley Zeeman effect, which enables repeatable switching of the sample reflectance by light polarization. Our study has opened up exciting opportunities in controlling light with light, including its wavelength, power, and polarization, using monolayer semiconductors.

18.
Arch Toxicol ; 92(4): 1421-1434, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29435600

RESUMEN

Unfolded protein response (UPR) and endoplasmic reticulum (ER)-phagy are essential for cell homeostasis. Quantum dots (QDs), which have been widely used for biomedical applications, can accumulate in the kidney tissues and may cause renal dysfunction. However, the molecular mechanism of QDs-induced nephrotoxicity is still obscure. The present study was aimed to elucidate the role and mechanism of UPR and ER-phagy in QDs-induced nephrotoxicity. Herein, human embyronic kidney (HEK) cells were exposed to 15, 30, 45, and 60 nM cadmium telluride (CdTe)-QDs for 12 and 24 h. And CdTe-QDs (30-60 nM) inhibited the HEK cell viability. The clathrin-dependent endocytosis was determined as the main pathway of CdTe-QDs cellular uptake. Within cells, CdTe-QDs disrupted ER ultrastructure and induced UPR and FAM134B-dependent ER-phagy. Blocking UPR with inhibitors or siRNA rescued the FAM134B-dependent ER-phagy, which was triggered by CdTe-QDs. Moreover, suppression of UPR or FAM134B-dependent ER-phagy restored the cell vability. In vivo, mice were intravenously injected with 8 and 16 nmol/kg body weight CdTe-QDs for 24 h. Kidney was shown as one of highest distributed organs of CdTe-QDs, resulting in renal dysfunction, as well as UPR and FAM134B-dependent ER-phagy in it. Thus, for the first time, we demonstrated that ER-phagy can be triggered by nanomaterials both in vitro and in vivo. In addition, blocking of UPR and ER-phagy showed protective effects against CdTe-QDs-induced toxicity in kideny cells. Notably, a secreted alkaline phosphatase reporter gene system has been developed as a sensitive and rapid method for evaluating the ER quality under the exposure of nanomaterials.


Asunto(s)
Compuestos de Cadmio/toxicidad , Endocitosis , Retículo Endoplásmico/efectos de los fármacos , Riñón/efectos de los fármacos , Puntos Cuánticos/toxicidad , Telurio/toxicidad , Respuesta de Proteína Desplegada , Animales , Compuestos de Cadmio/administración & dosificación , Línea Celular , Retículo Endoplásmico/ultraestructura , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/metabolismo , Telurio/administración & dosificación
19.
Prep Biochem Biotechnol ; 48(4): 378-382, 2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561226

RESUMEN

A silica sands-based method has been developed to isolate high quality genomic DNAs from cells of animals, plants and microorganisms, such as Hemisalanx prognathus, Spinacia oleracea, Pichia pastoris, Bacillus licheniformis and Escherichia coli. To the best of our knowledge, no DNA isolation method has so wide application until now. In addition, this method and a commercially available kit were compared in analysis of microbial communities using high-throughput 16s rDNA sequencing. As a result, the silica sands-based method was found to be even more efficient in isolating genomic DNA from gram-positive bacteria than the kit, indicating that it would become a very valuable choice to faithfully reflect the composition of microbial communities.


Asunto(s)
ADN/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Dióxido de Silicio/química , Microbiología del Suelo , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN Ribosómico/genética , ADN Ribosómico/aislamiento & purificación , Hongos/genética , Hongos/aislamiento & purificación
20.
Biotechnol Lett ; 36(11): 2223-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24980851

RESUMEN

A rapid and convenient method for extracting DNA from soil is presented. Soil DNA is extracted by direct cell lysis in the presence of EDTA, SDS, phenol, chloroform and isoamyl alcohol (3-methyl-1-butanol) followed by precipitation with 2-propanol. The extracted DNA is purified by modified DNA purification kit and DNA gel extraction kit. With this method, DNA extracted from humus-rich dark brown forest soil was free from humic substances and, therefore, could be used for efficient PCR amplification and restriction digestion. In contrast, DNA sample extracted with the traditional CTAB-based method had lower yield and purity, and no DNA could be extracted from the same soil sample with a commonly-used commercial soil DNA isolation kit. In addition, this method is time-saving and convenient, providing an efficient choice especially for DNA extraction from humus-rich soils.


Asunto(s)
Biotecnología/métodos , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Sustancias Húmicas/microbiología , Microbiología del Suelo , Metagenoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA