Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Carcinog ; 63(4): 757-771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38289172

RESUMEN

Long noncoding RNAs (LncRNAs) have been gaining attention as potential therapeutic targets for lung cancer. In this study, we investigated the expression and biological behavior of lncRNA DARS-AS1, its predicted interacting partner miR-302a-3p, and ACAT1 in nonsmall cell lung cancer (NSCLC). The transcript level of DARS-AS1, miR-302a-3p, and ACAT1 was analyzed using qRT-PCR. Endogenous expression of ACAT1 and the expression of-and changes in-AKT/ERK pathway-related proteins were determined using western blotting. MTS, Transwell, and apoptosis experiments were used to investigate the behavior of cells. The subcellular localization of DARS-AS1 was verified using FISH, and its binding site was verified using dual-luciferase reporter experiments. The binding of DARS-AS1 to miR-302a-3p was verified using RNA co-immunoprecipitation. In vivo experiments were performed using a xenograft model to determine the effect of DARS-AS1 knockout on ACAT1 and NSCLC. lncRNA DARS-AS1 was upregulated in NSCLC cell lines and tissues and the expression of lncRNA DARS-AS1 was negatively correlated with survival of patients with NSCLC. Knockdown of DARS-AS1 inhibited the malignant behaviors of NSCLC via upregulating miR-302a-3p. miR-302a-3p induced suppression of malignancy through regulating oncogene ACAT1. This study demonstrates that the DARS-AS1-miR-302a-3p-ACAT1 pathway plays a key role in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo
2.
Microb Pathog ; 193: 106774, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969184

RESUMEN

The increasing prevalence of extensively drug-and pan-drug-resistant Pseudomonas aeruginosa is a major concern for global public health. Therefore, it is crucial to develop novel antimicrobials that specifically target P. aeruginosa and its biofilms. In the present study, we determined that berberine hydrochloride inhibited the growth of planktonic bacteria as well as prevented the formation of biofilms. Moreover, we observed downregulation in the expression of pslA and pelA biofilm-related genes. Compared with existing antibiotics, berberine hydrochloride exhibits multiple modes of action against P. aeruginosa. Our findings suggest that berberine hydrochloride exerts its antimicrobial effects by damaging bacterial cell membranes, generating reactive oxygen species (ROS), and reducing intracellular adenosine triphosphate (ATP) levels. Furthermore, berberine hydrochloride showed minimal cytotoxicity and reduced susceptibility to drug resistance. In a mouse model of peritonitis, it significantly inhibited the growth of P. aeruginosa and exhibited a strong bacteriostatic action. In conclusion, berberine hydrochloride is a safe and effective antibacterial agent that inhibits the growth of P. aeruginosa.


Asunto(s)
Adenosina Trifosfato , Antibacterianos , Berberina , Biopelículas , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Plancton , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Especies Reactivas de Oxígeno , Berberina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Animales , Ratones , Antibacterianos/farmacología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Plancton/efectos de los fármacos , Peritonitis/microbiología , Peritonitis/tratamiento farmacológico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Chemistry ; : e202401802, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946439

RESUMEN

How to coordinate electron and ion transport behavior across scales and interfaces within ion battery electrodes? The exponential increase in surface area observed in nanoscale electrode materials results in an incomprehensibly vast spatial interval. Herein, to address the problems of volume expansion, dissolution of cathode material, and the charge accumulation problem existing in manganiferous materials for zinc ion batteries, metal organic framework is utilized to form the architecture of non-interfacial blocking ~10 nm Mn2O3 nanoparticles and amorphous carbon hybrid electrode materials, demonstrating a high specific capacity of 361 mAh g-1 (0.1 A g-1), and excellent cycle stability of 105 mAh g-1 after 2000 cycles under 1 A g-1. The uniform and non-separated disposition of Mn and C atoms constitutes an interconnected network with high electronic and ionic conductivity, minimizing issues like structural collapse and volume expansion of the electrode material during cycling. The cooperative insert mechanism of H+ and Zn2+ are analyzed via ex-situ XRD and in-situ Raman tests. The model battery is assembled to present practical possibilities. The results indicate that MOF-derived carbonization provides an effective strategy for exploring Mn-based electrode materials with high ion and electron transport capacity.

4.
Phys Chem Chem Phys ; 26(6): 4794-4811, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259226

RESUMEN

In recent years, remarkable advancements have been achieved in the field of halide perovskite solar cells (PSCs). However, the commercialization of PSCs has been impeded by challenges such as Pb leakage and the instability of hybrid organic-inorganic perovskites (HOIPs). Hence, the future lies in the development of environmentally friendly inorganic lead-free halide perovskites (LFHPs) based on elements like Sn, Ge, Bi, Sb, and Cu, which show great promise for photovoltaic applications. However, LFHP photovoltaic cells still face challenges such as low efficiency, poor film quality, and stability in comparison to HOIPs. These limitations significantly hinder their further development. To address these issues, element doping strategies, including cationic and anionic doping, as well as the use of additives, are frequently employed. These strategies aim to improve film quality, passivate defects, reduce the band gap, and enhance device performance and stability. In this paper, we aim to provide a comprehensive review of the recent research progress in doping strategies for LFHPs.

5.
Environ Health ; 23(1): 36, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609898

RESUMEN

BACKGROUND: Multifaceted SARS-CoV-2 interventions have modified exposure to air pollution and dynamics of respiratory diseases. Identifying the most vulnerable individuals requires effort to build a complete picture of the dynamic health effects of air pollution exposure, accounting for disparities across population subgroups. METHODS: We use generalized additive model to assess the likely changes in the hospitalisation and mortality rate as a result of exposure to PM2.5 and O3 over the course of COVID-19 pandemic. We further disaggregate the population into detailed age categories and illustrate a shifting age profile of high-risk population groups. Additionally, we apply multivariable logistic regression to integrate demographic, socioeconomic and climatic characteristics with the pollution-related excess risk. RESULTS: Overall, a total of 1,051,893 hospital admissions and 34,954 mortality for respiratory disease are recorded. The findings demonstrate a transition in the association between air pollutants and hospitalisation rates over time. For every 10 µg/m3 increase of PM2.5, the rate of hospital admission increased by 0.2% (95% CI: 0.1-0.7%) and 1.4% (1.0-1.7%) in the pre-pandemic and dynamic zero-COVID stage, respectively. Conversely, O3-related hospitalization rate would be increased by 0.7% (0.5-0.9%) in the pre-pandemic stage but lowered to 1.7% (1.5-1.9%) in the dynamic zero-COVID stage. Further assessment indicates a shift of high-risk people from children and young adolescents to the old, primarily the elevated hospitalization rates among the old people in Lianyungang (RR: 1.53, 95%CI: 1.46, 1.60) and Nantong (RR: 1.65, 95%CI: 1.57, 1.72) relative to those for children and young adolescents. Over the course of our study period, people with underlying diseases would have 26.5% (22.8-30.3%) and 12.7% (10.8-14.6%) higher odds of having longer hospitalisation and over 6 times higher odds of deaths after hospitalisation. CONCLUSIONS: Our estimates provide the first comprehensive evidence on the dynamic pollution-health associations throughout the pandemic. The results suggest that age and underlying diseases collectively determines the disparities of pollution-related health effect across population subgroups, underscoring the urgency to identifying the most vulnerable individuals to air pollution.


Asunto(s)
Contaminación del Aire , Trastornos Respiratorios , Enfermedades Respiratorias , Adolescente , Niño , Humanos , Pandemias , Enfermedades Respiratorias/epidemiología , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversos
6.
Macromol Biosci ; : e2400249, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052359

RESUMEN

The performance of the cell-selective thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) cell harvest system is shown to be drastically enhanced by exploiting the combination of photoresponsive spiropyran derivates and PDEGMA in copolymerized brushes. The analysis of copolymerized 1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitrospiro(2H-1-benzopyran-2,2'-indoline) (SPMA) (DEMGA) di(ethylene glycol)methyl ether methacrylate brushes revealed that a minor adjustment of the SPMA/DEGMA ratios results in a significant alternation of wettability as well as protein adsorption, when switching the temperature from 37 to 22 °C and alternately irradiating using different light wavelengths (from 530 to 365 nm). Thin P(SPMA-co-DEGMA) layers supported pancreatic tumor PaTu 8988t cells with high cell viability. Copolymer layers with 2.5% SPMA/DEGMA led to the highest efficiency of enzyme-free cell release with very good cell viability. The release is induced by cooling the cell culture medium to 22 °C and irradiating the surface with 365 nm light. Compared to neat PDEGMA, the P(SPMA-co-DEGMA) layers showed a threefold increase in the speed of the change of cell morphology of the attached cells and a >5 times increased fraction of detached cells, which underlines the potential of these dual responsive PDEGMA systems for optimized performance in the facile capture, culture, and release of different cell lines.

7.
AoB Plants ; 16(3): plae028, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38854500

RESUMEN

Land-use change and tourism development have seriously threatened the ecosystems of coastal protection forests and beaches. Light and nutrients are spatially heterogeneously distributed between the two ecosystems. Clonal plants, such as Calystegia soldanella, which play a crucial role in maintaining the ecological stability of coastal habitats, are likely to encounter diverse environments. In this study, we investigated clonal integration and the division of labour in C. soldanella under heterogeneous (high nutrient and low light [HNLL]; low nutrient and high light [LNHL]) and homogeneous habitats. We cultivated pairs of connected and severed ramets of C. soldanella in these environments. Our results showed the total biomass (TB) of connected ramets was higher than that of severed ramets in heterogeneous environments, suggesting clonal integration enhances growth in heterogeneous habitats. The root shoot ratio was significantly lower in HNLL than in LNHL conditions for connected ramets, demonstrating a division of labour in growth under heterogeneous conditions. However, parameters of clonal propagation of C. soldanella did not significantly differ between connected and severed ramets in heterogeneous environments, indicating no division of labour in clonal propagation. In homogeneous environments, the growth of C. soldanella did not benefit from clonal integration. Connected ramets in heterogeneous habitats exhibited higher TB than in homogeneous habitats. The TB of one ramet in HNLL was consistently higher than that in LNHL, irrespective of ramet's states, which suggests that high soil nutrients may enhance the growth. We conclude that C. soldanella has the capability of clonal integration to achieve high biomass in heterogeneous but not in homogeneous conditions, and the establishment of coastal protection forests (high nutrient and low light) may foster the growth of C. soldanella.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA