RESUMEN
The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose-Einstein condensation, and light-energy harvesting. Anatase TiO2 with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe-Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron-phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron-hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright-dark exciton transitions sheds insights into applications of anatase TiO2 in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors.
RESUMEN
Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190 % inâ vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180 % inâ vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.
Asunto(s)
Caenorhabditis elegans , Proteínas Luminiscentes , Animales , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Caenorhabditis elegans/metabolismo , Humanos , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Biliverdina/química , Biliverdina/metabolismo , Colorantes Fluorescentes/química , Células HEK293RESUMEN
OBJECTIVES: The routine biomarkers for rheumatoid arthritis (RA), including anticyclic citrullinated peptide antibody (anti-CCP), rheumatoid factor (RF), immunoglobulin M (IgM), erythrocyte sedimentation rate (ESR), and C-reaction protein (CRP) have limited sensitivity and specificity. Scavenger receptor-A (SR-A) is a novel RA biomarker identified by our group recently, especially for seronegative RA. Here, we performed a large-scale multicentre study to further assess the diagnostic value of SR-A in combination with other biomarkers for RA. METHODS: The performance of SR-A in combination with other biomarkers for RA diagnosis was first revealed by a pilot study, and was further elucidated by a large-scale multicentre study. A total of 1129 individuals from 3 cohorts were recruited in the study, including RA patients, healthy controls, and patients with other common rheumatic diseases. Diagnostic properties were evaluated by the covariate-adjusted receiver-operating characteristic (AROC) curve, sensitivity, specificity and clinical association, respectively. RESULTS: Large-scale multicentre analysis showed that SR-A and anti-CCP dual combination was the optimal method for RA diagnosis, increasing the sensitivity of anti-CCP by 13% (87% vs 74%) while maintaining a specificity of 90%. In early RA patients, SR-A and anti-CCP dual combination also showed promising diagnostic value, increasing the sensitivity of anti-CCP by 7% (79% vs 72%) while maintaining a specificity of 94%. Moreover, SR-A and anti-CCP dual combination was correlated with ESR, IgM, and autoantibodies of RA patients, further revealing its clinical significance. CONCLUSION: SR-A and anti-CCP dual combination could potentially improve early diagnosis of RA, thus improving the prognosis and reducing mortality.
RESUMEN
OBJECTIVES: Cerebral ultrasound (CUS) is the main imaging screening tool in preterm infants. The aim of this work is to develop deep learning (DL) models that classify normal vs abnormal CUS to serve as a computer-aided detection tool providing timely interpretation of the scans. METHODS: A population-based cohort of very preterm infants (220-306 weeks) born between 2004 and 2016 in Nova Scotia, Canada. A set of nine sequential CUS images per infant was retrieved at three specific coronal landmarks at three pre-identified times (first, sixth weeks, and term age). A radiologist manually labeled each image as normal or abnormal. The dataset was split into training/development/test subsets (80:10:10). Different convolutional neural networks were tested, with filtering of the most uncertain prediction. The model's performance was assessed using precision/recall and the receiver operating area under the curve. RESULTS: Sequential CUS retrieved for 538/665 babies (81% of the cohort). Four thousand one hundred eighty images were used to develop and test the model. The model performance was only discrete at the beginning but, through different machine learning strategies was boosted to good levels averaging 0.86 ROC AUC (95% CI: 0.82, 0.90) and 0.87 PR AUC (95% CI: 0.84, 0.90) (model uncertainty estimation filters using normalized entropy threshold = 0.5). CONCLUSION: This study offers proof of the feasibility of applying DL to CUS. This basic diagnostic model showed good discriminative ability to classify normal versus abnormal CUS. This serves as a CAD and a framework for constructing a prognostic model. CLINICAL RELEVANCE STATEMENT: This DL model can serve as a computer-aided detection tool to classify CUS of very preterm babies as either normal or abnormal. This model will also be used as a framework to develop a prognostic model. KEY POINTS: Binary computer-aided detection models of CUS are applicable for classifying ultrasound images in very preterm babies. This model acts as a step towards developing a model for predicting neurodevelopmental outcomes in very preterm babies. This model serves as a tool for interpretation of CUS in this patient population with a heightened risk of brain injury.
RESUMEN
XOR gate, an important building block in computational circuits, is often constructed by combining other basic logic gates, and the hybridity inevitably leads to its complexity. A photoelectrochemical device could realize XOR function based on the current change of the photoelectrode; however, such signal is highly sensitive to photoelectrode size and therefore requires precise manufacturing at a high cost. Herein we developed a novel XOR gate based on the light-induced open-circuit potential (OCP) of the Bi2O3 photoelectrode. Surprisingly, the OCP of Bi2O3 does not increase with light intensity according to the traditional logarithmic relationship. Instead, an unusual decrease in OCP is observed at high light intensity, which is attributed to the dramatic light-induced increase in surface states that can be easily regulated by varying the oxygen partial pressure during reactive magnetron sputtering. Based on such a nonmonotonic variation of OCP, a facile Bi2O3-based gate is designed to realize the XOR function. Unlike the commonly used current signal, OCP is size independent, and therefore, the Bi2O3-based gate does not require high manufacturing accuracy. Moreover, in addition to XOR, the Bi2O3-based PEC gate also demonstrates great versatility in realizing other logic functions including AND, OR, NOT, NIH, NAND, and NOR. The strategy of modulating and applying nonmonotonic OCP signal opens a new avenue for designing size-independent reconfigurable logic gates at low manufacturing cost.
RESUMEN
BACKGROUND: The pathogenesis of intrahepatic cholestasis of pregnancy (ICP) remains unknown. The gut microbiome and its metabolites play important roles in bile acid metabolism, and previous studies have indicated the association of the gut microbiome with ICP. METHODS: We recruited a cohort of 5100 participants, and 20 participants were enrolled in the severe ICP group, matched with 20 participants in the mild ICP group and 20 controls. 16S rRNA sequencing and nontargeting metabolomics were adapted to explore the gut microbiome and fecal metabolites. RESULTS: An increase in richness and a dramatic deviation in composition were found in the gut microbiome in ICP. Decreased Firmicutes and Bacteroidetes abundances and increased Proteobacteria abundances were found in women with severe but not mild ICP compared to healthy pregnant women. Escherichia-Shigella and Lachnoclostridium abundances increased, whereas Ruminococcaceae abundance decreased in ICP group, especially in severe ICP group. The fecal metabolite composition and diversity presented typical variation in severe ICP. A significant increase in bile acid, formate and succinate levels and a decrease in butyrate and hypoxanthine levels were found in women with severe ICP. The MIMOSA model indicated that genera Ruminococcus gnavus group, Lachnospiraceae FCS020 group, and Lachnospiraceae NK4A136 group contributed significantly to the metabolism of hypoxanthine, which was significantly depleted in subjects with severe ICP. Genus Acinetobacter contributed significantly to formate metabolism, which was significantly enriched in subjects with severe ICP. CONCLUSIONS: Women with severe but not mild ICP harbored a unique gut microbiome and fecal metabolites compared to healthy controls. Based on these profiles, we hypothesized that the gut microbiome was involved in bile acid metabolism through metabolites, affecting ICP pathogenesis and development, especially severe ICP.
Asunto(s)
Microbioma Gastrointestinal , Humanos , Femenino , Embarazo , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Heces/microbiología , Ácidos y Sales Biliares , HipoxantinasRESUMEN
Far-red and near-infrared fluorescent proteins can be used as fluorescence biomarkers in the region of maximal transmission of most tissues and facilitate multiplexing. Recently, we reported the generation and properties of far-red and near-infrared fluorescent phycobiliproteins, termed BeiDou Fluorescent Proteins (BDFPs), which can covalently bind the more readily accessible biliverdin. Far-red BDFPs maximally fluoresce at â¼670â nm, while near-infrared BDFPs fluoresce at â¼710â nm. In this work, we molecularly evolved BDFPs as follows: (a) mutations L58Q, S68R and M81K of BDFPs, which can maximally enhance the effective brightness inâ vivo by 350 %; (b) minimization and monomerization of far-red BDFPs 2.1, 2.2, 2.3, and near-infrared BDFPs 2.4, 2.5 and 2.6. These newly developed BDFPs are remarkably brighter than the formerly reported far-red and near-infrared fluorescent proteins. Their advantages are demonstrated by biolabeling in mammalian cells using super-resolution microscopy.
Asunto(s)
Biliverdina , Ficobiliproteínas , Animales , Proteínas Bacterianas/metabolismo , Biomarcadores , Colorantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Microscopía Fluorescente , Ficobiliproteínas/metabolismoRESUMEN
Rheumatoid arthritis (RA) is an autoimmune disease characterized by proliferative synovitis with deterioration of cartilage and bone. Osteoclasts (OCs) are the active participants in the bone destruction of RA. Although with great advances, most current therapeutic strategies for RA have limited effects on bone destruction. Macrophage scavenger receptor A (SR-A) is a class of pattern recognition receptors (PRRs) involved in bone metabolism and OC differentiation. More recently, our study revealed the critical role of SR-A in RA diagnosis and pathogenesis. Here, we further demonstrated that serum SR-A levels were positively correlated with bone destruction in patients with RA. Anti-SR-A neutralizing antibodies significantly inhibited OC differentiation and bone absorption in vitro in patients with RA, but not in healthy individuals, dampening the expression of OC-specific genes such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and matrix metalloproteinase-9 (MMP-9). Similar results were also seen in collagen-induced arthritis (CIA) mice in vitro. Moreover, the anti-SR-A neutralizing antibody could further ameliorate osteoclastogenesis in vivo and ex vivo in CIA mice, accompanied by decreased serum levels of C-terminal telopeptide and IL-6, exhibiting potential protective effects. These results suggest that blockade of SR-A using anti-SR-A neutralizing antibodies might provide a promising therapeutic strategy for bone destruction in the RA.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Anticuerpos Neutralizantes/metabolismo , Artritis Experimental/metabolismo , Artritis Reumatoide/patología , Humanos , Ratones , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/metabolismoRESUMEN
BACKGROUND AND AIMS: Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that display a critical role in various liver diseases. However, the role of MAIT cells in cholestatic liver fibrogenesis remains obscure. Our study aims to assess the contribution of MAIT cells and underlying mechanisms during this process. METHODS: Cholestatic murine models using MAIT cell-deficient (MR1- /- ) and wild-type (WT) mice were established by feeding a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-enriched diet or bile duct ligation (BDL). Liver samples were collected to determine the severity of fibrosis. Lymphocytes of the liver were isolated for analysing the phenotype and function of MAIT cells. Cell co-culture experiments were performed to investigate the cross-talk between MAIT and NK cells. RESULTS: Liver MAIT cells were more activated with increased cytokines in cholestatic mice models than in control mice, although their frequency was decreased. MAIT cell deficiency led to severe liver inflammation and fibrosis with more activated HSCs in cholestatic mice. In addition, MR1- /- mice had an increased frequency of NK cells with higher expression of stimulatory receptors relative to WT mice. Paradoxically, activated MAIT cells significantly promoted the anti-fibrotic ability of NK cells by enhancing their cytotoxicity against HSCs in co-culture experiments. Importantly, this effect depended on direct cell-cell contact and TNF-α produced by MAIT cells. CONCLUSION: Our findings indicate that MAIT cells ameliorate cholestatic liver fibrosis by enhancing the cytotoxicity of NK cells against HSCs. An in-depth understanding of the MAIT cell-mediated regulatory effect will provide more valuable immunotherapy strategies to treat liver fibrosis.
Asunto(s)
Colestasis , Células T Invariantes Asociadas a Mucosa , Ratones , Animales , Modelos Animales de Enfermedad , Cirrosis Hepática/genética , Células Asesinas NaturalesRESUMEN
BACKGROUND: Napsin B Aspartic Peptidase, Pseudogene (NAPSB) was associated with CD4 + T cell infiltration in pancreatic ductal adenocarcinoma. However, the biological role of NAPSB in hepatocellular carcinoma (HCC) remains to be determined. METHODS: The expression of NAPSB in HCC as well as its clinicopathological association were analyzed using data from several public datasets. qRT-PCR was used to verify the relative expression of NAPSB in patients with HCC using the Zhongnan cohort. Kaplan-Meier analyses, and univariate and multivariate Cox regression were conducted to determine the prognosis value of NAPSB on patients with HCC. Then enrichment analyses were performed to identify the possible biological functions of NAPSB. Subsequently, the immunological characteristics of NAPSB in the HCC tumor microenvironment (TME) were demonstrated comprehensively. The role of NAPSB in predicting hot tumors and its impact on immunotherapy and chemotherapy responses was also analyzed by bioinformatics methods. RESULTS: NAPSB was downregulated in patients with HCC and high NAPSB expression showed an improved survival outcome. Enrichment analyses showed that NAPSB was related to immune activation. NAPSB was positively correlated with immunomodulators, tumor-infiltrating immune cells, T cell inflamed score and cancer-immunity cycle, and highly expressed in immuno-hot tumors. High expression of NAPSB was sensitive to immunotherapy and chemotherapy, possibly due to its association with pyroptosis, apoptosis and necrosis. CONCLUSIONS: NAPSB was correlated with an immuno-hot and inflamed TME, and tumor cell death. It can be utilized as a promising predictive marker for prognosis and therapy in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Pronóstico , Microambiente TumoralRESUMEN
PURPOSE: Navigation is becoming more useful in percutaneous pedicle screw fixation (PPSF). The aim of this study was to compare the efficiency, fluoroscopic time, accuracy, and clinical outcomes of PPSF with a novel electromagnetic navigation (EMN) system for thoraco-lumbar (TL) fractures with those of PPSF with conventional C-arm fluoroscopic (CF) guidance. METHODS: A retrospective study was conducted. A total of 162 screws were implanted in 29 patients with the assistance of the EMN system (EMN group), and 220 screws were inserted in 40 patients by using CF guidance (CF group). The duration of surgery, placement time per screw, fluoroscopic time per screw, accuracy of pedicle screw placement, and clinical outcomes were compared between the two groups. RESULTS: The duration of surgery and placement time per screw in the EMN group were significantly lower than those in the CF group (P < 0.05). The fluoroscopic time per screw in the CF group was significantly longer than that in the EMN group (P < 0.05). The learning curve of PPSF in the EMN group was steeper than that in the CF group. The accuracy of pedicle screw placement in the EMN group was more precise than that in the CF group (P < 0.05). The VAS scores in the EMN group were significantly lower than those in the CF group at one-week postoperatively (P < 0.05). CONCLUSION: Compared with PPSF by using conventional fluoroscopic guidance, PPSF with the aid of the EMN system can increase the efficiency and accuracy of pedicle screw placement and reduce the fluoroscopic time.
Asunto(s)
Fracturas Óseas , Tornillos Pediculares , Cirugía Asistida por Computador , Fluoroscopía , Fracturas Óseas/cirugía , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Estudios RetrospectivosRESUMEN
OBJECTIVE: To investigate the clinical features and outcomes of children with congenital hypothyroidism (CH) missed by neonatal screening. METHODS: The clinical and laboratory date of 31 children with CH missed by neonatal screening from February 2015 to February 2022 in Guangzhou Women and Children's Medical Center were retrospectively analyzed. Whole-exome high-throughput sequencing analysis was performed in 17 patients. RESULTS: Among the 31 patients, 19 cases (61.3%) were preterm, 12 cases (38.7%) were term neonates. The median value of gestation age was 36 (26-40) weeks, birth weight was 2.35 (0.75-3.70)â kg, diagnosed age was 20â d (7â d-4â years), dry blood spot thyrotropin was 4.18 (0.34-8.97)â mU/L. Nine cases (29.0%) were same-sex twins and 4 cases (12.9%) had a family history of hypothyroidism. The initial clinical symptoms were growth retardation in 11 cases (35.5%), prolonged jaundice in 7 cases (22.6%), short stature, abdominal distension, fetal edema and goiter in 1 case (3.2%), respectively. Genetic analysis of the 17 children showed that DUOX2 gene mutations were detected in 10 cases (6 cases with biallelic mutations and 4 cases with monoallelic mutations), of whom 3 had a family history of hypothyroidism. A total of 22 patients were reevaluated at the age of 2-3â years, of whom 17 cases (77.3%) were transient CH and 5 cases (22.7%) were permanent CH. Among the 10 cases with DUOX2 gene mutations, 6 cases were transient CH, 1 case was permanent CH, and 3 cases (< 3 years old) were still under treatment with L-thyroxine. CONCLUSIONS: False negative results on neonatal screening for CH often occurs in preterm birth, low birth weight, same-sex twins, family history of hypothyroidism, and DUOX2 defects are the common molecular pathogenesis, most of whom are transient CH. Thyroid function should be evaluated in time for children with unexplained slow growth and delayed jaundice regression.
Asunto(s)
Hipotiroidismo Congénito , Nacimiento Prematuro , Preescolar , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/tratamiento farmacológico , Hipotiroidismo Congénito/genética , Oxidasas Duales , Femenino , Humanos , Recién Nacido , Tamizaje Neonatal , Estudios Retrospectivos , Tirotropina , Tiroxina/uso terapéuticoRESUMEN
The outer membrane (OM) is an essential component of the Gram-negative bacterial envelope that protects the cells against external threats. To maintain a functional OM, cells require distinct mechanisms to ensure balance of proteins and lipids in the membrane. Mutations in OM biogenesis and/or homeostasis pathways often result in permeability defects, but how molecular changes in the OM affect barrier function is unclear. Here, we seek potential mechanism(s) that can alleviate permeability defects in Escherichia coli cells lacking the Tol-Pal complex, which accumulate excess PLs in the OM. We identify mutations in enterobacterial common antigen (ECA) biosynthesis that re-establish OM barrier function against large hydrophilic molecules, yet did not restore lipid homeostasis. Furthermore, we demonstrate that build-up of biosynthetic intermediates, but not loss of ECA itself, contributes to the rescue. This suppression of OM phenotypes is unrelated to known effects that accumulation of ECA intermediates have on the cell wall. Finally, we reveal that an unusual diacylglycerol pyrophosphoryl-linked lipid species also accumulates in ECA mutants, and might play a role in the rescue phenotype. Our work provides insights into how OM barrier function can be restored independent of lipid homeostasis, and highlights previously unappreciated effects of ECA-related species in OM biology.
Asunto(s)
Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Membrana Externa Bacteriana/fisiología , Escherichia coli/genética , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Permeabilidad de la Membrana Celular , Pared Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Homeostasis , Mutación , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismoRESUMEN
Proper differentiation of trophoblast cells in the human placenta is a prerequisite for a successful pregnancy, and dysregulation of this process may lead to malignant pregnancy outcomes, such as preeclampsia. Finding specific markers for different types of trophoblast cells is essential for understanding trophoblast differentiation. Here, we report that placenta-specific protein 8 (PLAC8) is specifically expressed in the interstitial extravillous trophoblast cells (iEVTs) on the fetomaternal interface. Using model systems, including placental villi-decidua co-culture, iEVTs induction by using primary trophoblast cells or explants, etc., we found that PLAC8 promotes invasion and migration of iEVTs. Mechanistically, time-lapse imaging, GTPase activity assay, co-immunoprecipitation and RNA-seq studies show that PLAC8 increases the Cdc42 and Rac1 activities, and further induces the formation of filopodia at the leading edge of the migratory trophoblast cells. More interestingly, PLAC8 is significantly upregulated under hypoxia and expression of PLAC8 is higher in iEVTs from preeclamptic placentas when compared with those from the normal control placentas. Together, PLAC8 is a new marker for iEVTs and plays an important role in promoting trophoblast invasion and migration.
Asunto(s)
Placenta/citología , Placenta/fisiología , Proteínas/fisiología , Trofoblastos/fisiología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Vellosidades Coriónicas/anatomía & histología , Técnicas de Cocultivo , Decidua/citología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Placenta/irrigación sanguínea , Preeclampsia/genética , Preeclampsia/patología , Preeclampsia/fisiopatología , Embarazo , Proteínas/antagonistas & inhibidores , Proteínas/genética , ARN Interferente Pequeño/genética , Regulación hacia Arriba , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismoRESUMEN
BACKGROUND: Stromal components of the tumor microenvironment contribute to bladder cancer progression, and Cancer-Associated Fibroblasts (CAFs) were reported to play an important role. Accumulating pieces of evidence indicate that CAFs participate in the crosstalk with tumor cells and have a complex interaction network with immune components. Further studies on the role of CAFs in the bladder cancer microenvironment and searching for possible specific markers are important for a deeper understanding of CAFs in bladder cancer progression and immunomodulation. METHODS: In the present study, we examined the abundance of CAFs in the TCGA and GEO datasets using the MCP-COUNTER algorithm. Additionally, the expression of genes related to CAFs was analyzed through the Weighted Gene Co-expression Network Analysis (WGCNA). The CIBERSORT and ESTIMATE algorithms were used to discuss the correlation of the key CAFs-related gene and the tumor microenvironment components. Immunohistochemistry analysis in clinical samples was used to validate the results of bioinformatics analysis. RESULTS: The results showed that CAFs were closely associated with the progression and prognosis of bladder cancer. WGCNA also revealed that CALD1 was a key CAFs-related gene in bladder cancer. Moreover, further in-depth analysis showed that CALD1 significantly affected the progression and prognosis of bladder cancer. The CIBERSORT and ESTIMATE algorithms demonstrated significant correlations between CALD1 and the tumor microenvironment components, including CAFs, macrophages, T cells, and multiple immune checkpoint related genes. Finally, immunohistochemistry results validated the strong association of CALD1 with CAFs and macrophages. CONCLUSIONS: In the present study, we confirmed the cancer-promoting roles of CAFs in bladder cancer. Being a key gene associated with CAFs, CALD1 may promote bladder cancer progression by remodeling the tumor microenvironment. The bioinformatics methods, including the CIBERSORT, MCP-COUNTER and ESTIMATE algorithms, may provide important value for studying the tumor microenvironment.
RESUMEN
BACKGROUND: Bladder cancer (BLCA) is the most common genitourinary tumor but lacks specific diagnostic biomarkers. Recent years have witnessed significant advances in the use and approval of immune checkpoint blockade (ICB) therapy to manage BLCA at advanced stages when platinum-based therapy has failed. The tumor microenvironment (TME) is essential in impacting BLCA patients' prognosis and responsiveness to ICB therapy. CXCL12 is a stromal secreted factor that was essentially involved in regulating the TME among cancers. In this article, we thoroughly investigated the TME regulating roles of CXCL12 in BLCA and revealed its critical involvement in the development of BLCA, which was closely correlated with inflammatory fibroblasts (iCAFs). METHODS: We examined the gene expression profiles in the TCGA and GEO database to reveal the potential association of CXCL12 with the carcinogenesis and prognosis of BLCA. The receiver operating characteristic curve was used to explore the accuracy of CXCL12 along with multiple iCAFs-associated genes in the diagnosis of BLCA. The MCP-COUNTER, ESTIMATE, and TIDE algorithms were applied to estimate the TME components and predict immunotherapy responsiveness. An iCAFs signature was constructed using the ssGSEA algorithm. The "maftool" R package analyzed the oncogenic mutations in BLCA patients. Bioinformatics analysis results were further validated through immunohistochemistry of clinical samples. IMvigor210 cohort was used to validate bioinformatic predictions of therapeutic responsiveness to immune checkpoint inhibitors. RESULTS: This manuscript revealed a significantly reduced expression of CXCL12 in BLCA compared with normal tissue. The expressions of various marker genes for iCAFs were also reduced considerably in BLCA tissues, highlighting the reduction of iCAFs in the pathogenesis of BLCA. Further studies revealed that CXCL12 and iCAFs were associated with pathological features, TME remodeling and aging in BLCA patients. The iCAFs signature further confirmed the intricate immunomodulatory roles of iCAFs in BLCA. Gene mutation analysis revealed the essential relationship between iCAFs and the mutation frequency of oncogenic genes, including TP53 and FGFR3. Meantimes, iCAFs levels also significantly affected BLCA patients' mutations in the TP53 and RTK-RAS pathways. Finally, our results confirmed the significant exclusion of CD8 + T cells by iCAFs, which further influenced the immunotherapy responsiveness in BLCA patients. CONCLUSIONS: This article highlighted the impact of CXCL12 on the pathogenesis and progression of BLCA. The reduced expression levels of iCAFs markers, including CXCL12, were highly accurate in the diagnosis of BLCA, suggesting the reduction of iCAFs accompanied bladder carcinogenesis. However, both CXCL12 and iCAFs significantly impacted the prognosis and immunotherapy responsiveness for BLCA patients by remodeling the TME. Our results critically suggested the dual roles of iCAFs in the carcinogenesis and progression of BLCA. Further exploration of iCAFs might unravel potential diagnostic biomarkers and therapeutic targets for BLCA.
RESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent and inflammation-associated cancers. The tumor microenvironment (TME) plays an essential role in HCC development and metastasis, leading to poor prognosis. The overall TME immune cells infiltration characterizations mediated by immune-related genes (IRGs) remain unclear. In this study, we aimed to investigate whether immune-related genes could be indicators for the prognosis of HCC patients and TME cell infiltration characterization as well as responses to immunotherapy. METHODS: We obtained differentially expressed immune-related genes (DE IRGs) between normal liver tissues and liver cancer tissues from The Cancer Genome Atlas (TCGA) database. To identify the prognostic genes and establish an immune risk signature, we performed univariable Cox regression survival analysis and the Least Absolute Shrinkage and Selector Operation (LASSO) regression based on the DE IRGs by robust rank aggregation method. Cox regression analysis was used to identify independent prognostic factors in HCC. We estimated the immune cell infiltration in TME via CIBERSORT and immunotherapy response through TIDE algorithm. RESULTS: We constructed an immune signature and validated its predictive capability. The immune signature included 7 differentially expressed IRGs: BIRC5, CACYBP, NR0B1, RAET1E, S100A8, SPINK5, and SPP1. The univariate and multivariate cox analysis showed that the 7-IRGs signature was a robust independent prognostic factor in the overall survival of HCC patients. The 7-IRG signature was associated with some clinical features, including gender, vascular invasion, histological grade, clinical stage, T stage. We also found that the 7-IRG signature could reflect the infiltration characterization of different immunocytes in the tumor microenvironment (TME) and had a good correlation with immune checkpoint molecules, revealing that the poor prognosis might be partly due to immunosuppressive TME. The Tumour Immune Dysfunction and Exclusion (TIDE) analysis data showed that the 7-IRG signature had great potential for indicating the immunotherapy response in HCC patients. The mutation analysis demonstrated a significant difference in the tumor mutation burden (TMB) between the high- and low-risk groups, partially explaining this signature's predictive value. CONCLUSION: In a word, we constructed and validated a novel, immune-related prognostic signature for HCC patients. This signature could effectively indicate HCC patients' survival and immunotherapy response. And it might act as potential immunotherapeutic targets for HCC patients.
RESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a treatment-refractory malignancy with poor prognosis. It is urgent to identify novel and valid biomarkers to predict the progress and prognosis of PDAC. The S100A family have been identified as being involved in cell proliferation, migration and differentiation progression of various cancer types. However, the expression patterns and prognostic values of S100As in PDAC remain to be analyzed. METHODS: We investigated the transcriptional expressions, methylation level and prognostic value of S100As in PDAC patients from the Oncomine, GEPIA2, Linkedomics and cBioPortal databases. Real-time PCR was used to detect the expressions of S100A2/4/6/10/14/16 in four pancreatic cancer cell lines and pancreatic cancer tissues from PDAC patients undergoing surgery. To verify the results further, immunohistochemistry was used to measure the expression of S100A2/4/6/10/14/16 in 43 PDAC patients' tissue samples. The drug relations of S100As were analyzed by using the Drugbank database. RESULTS: The results suggested that, the expression levels of S100A2/4/6/10/14/16 were elevated to PDAC tissues than in normal pancreatic tissues, and the promoter methylation levels of S100A S100A2/4/6/10/14/16 in PDAC (n = 10) were lower compared with normal tissue (n = 184) (P < 0.05). In addition, their expressions were negatively correlated with PDAC patient survival. CONCLUSIONS: Taken together, these results suggest that S100A2/4/6/10/14/16 might be served as prognostic biomarkers for survivals of PDAC patients.
Asunto(s)
Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas S100/metabolismo , Adenocarcinoma/mortalidad , Anexina A2/metabolismo , Proteínas de Unión al Calcio/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Factores Quimiotácticos/metabolismo , Bases de Datos Genéticas , Progresión de la Enfermedad , Humanos , Páncreas/metabolismo , Neoplasias Pancreáticas/mortalidad , Pronóstico , ARN Mensajero/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo , Proteínas S100/genética , Transcripción GenéticaRESUMEN
In our efforts to identify orally bioavailable CGRP receptor antagonists, we previously discovered a novel series of orally available azepinone derivatives that unfortunately also exhibited the unwanted property of potent time-dependent human CYP3A4 inhibition. Through heterocyclic replacement of the indazole ring, we discovered a series of heterocycle derivatives as high-affinity CGRP receptor antagonists. Some of them showed reasonable oral exposures, and the imidazolone derivatives that showed good oral exposure also exhibited substantially reduced time-dependent CYP3A4 inhibition. Several compounds showed strong in vivo efficacy in our marmoset facial blood flow assay with up to 87% inhibition of CGRP-induced activity. However, oral bioavailability generally remained low, emphasizing the challenges we and others encountered in discovering clinical development candidates for this difficult Class B GPCR target.
Asunto(s)
Azepinas/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Azepinas/síntesis química , Azepinas/química , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/síntesis química , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Rydberg-like image potential states (IPSs) form special series surface states on metal and semiconducting surfaces. Here, using time-resolved and momentum-resolved multi-photon photoemission (mPPE), we measured the energy positions, band dispersion, and carrier lifetimes of IPSs at the 2H-MoS2 surface. The energy minima of the IPSs (n = 1 and 2) were located at 0.77 and 0.21 eV below the vacuum level. In addition, the effective masses of these two IPSs are close to the rest mass of the free electron, clearly showing nearly-free-electron character. These properties suggest a good screening effect in the MoS2 parallel to the surface. The multi-photon resonances between the valence band and IPS (n = 1) are observed, showing a kâ-momentum-dependent behavior. Our time-resolved mPPE measurements show that the lifetime of photoexcited electrons in the IPS (n = 1) is about 33 fs.