Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biomacromolecules ; 25(1): 238-247, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38116793

RESUMEN

Chitinase plays a vital role in the efficient biotransformation of the chitin substrate. This study aimed to modify and elucidate the contribution of the relatively conserved residues in the active site architecture of a thermophilic chitinase SsChi18A from Streptomyces sp. F-3 in processive catalysis. The enzymatic activity on colloidal chitin increased to 151%, 135%, and 129% in variants Y286W, E287A, and K186A compared with the wild type (WT). Also, the apparent processive parameter G2/G1 was lower in the variants compared to the WT, indicating the essential role of Tyr-286, Glu-287, and Lys-186 in processive catalysis. Additionally, the enzymatic activity on the crystalline chitin of F48W and double mutants F48W/Y209F and F48W/Y286W increased by 35%, 16%, and 36% compared with that for WT. Molecular dynamics simulations revealed that the driving force of processive catalysis might be related to the changes in interaction energy. This study provided a rational design strategy targeting relatively conserved residues to enhance the catalytic activity of GH18 processive chitinases.


Asunto(s)
Quitinasas , Dominio Catalítico , Quitinasas/genética , Quitinasas/química , Quitinasas/metabolismo , Quitina/química , Simulación de Dinámica Molecular
2.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791523

RESUMEN

Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Glicoconjugados , Simulación de Dinámica Molecular , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/química , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Glucosa/metabolismo , Transporte Biológico , Termodinámica
3.
Cell Commun Signal ; 21(1): 83, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085908

RESUMEN

BACKGROUND: Lung cancer is the most lethal malignancy, with non-small cell lung cancer (NSCLC) being the most common type (~ 85%). Abnormal activation of epidermal growth factor receptor (EGFR) promotes the development of NSCLC. Chemoresistance to tyrosine kinase inhibitors, which is elicited by EGFR mutations, is a key challenge for NSCLC treatment. Therefore, more thorough understanding of EGFR expression and dynamics are needed. METHODS: Human non-small cell lung cancer cells and HEK293FT cells were used to investigate the molecular mechanism of gasdermin E (GSDME) regulating EGFR stability by Western blot analysis, immunoprecipitation and immunofluorescence. GSDME and EGFR siRNAs or overexpression plasmids were used to characterize the functional role of GSDME and EGFR in vitro. EdU incorporation, CCK-8 and colony formation assays were used to determine the proliferation ability of non-small cell lung cancer cells. RESULTS: GSDME depletion reduced the proliferation of non-small cell lung cancer cells in vitro. Importantly, both GSDME-full length (GSDME-FL) and GSDME-N fragment physically interacted with EGFR. GSDME interacted with cytoplasmic fragment of EGFR. GSDME knockdown inhibited EGFR dimerization and phosphorylation at tyrosine 1173 (EGFRY1173), which activated ERK1/2. GSDME knockdown also promoted phosphorylation of EGFR at tyrosine 1045 (EGFRY1045) and its degradation. CONCLUSION: These results indicate that GSDME-FL increases the stability of EGFR, while the GSDME N-terminal fragment induces EGFR degradation. The GSDME-EGFR interaction plays an important role in non-small cell lung cancer development, reveal a previously unrecognized link between GSDME and EGFR stability and offer new insight into cancer pathogenesis. Video abstract.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Gasderminas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/metabolismo , Gasderminas/metabolismo , Neoplasias Pulmonares/patología
4.
J Chem Inf Model ; 63(20): 6316-6331, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37821422

RESUMEN

Trichothecenes are highly toxic mycotoxins produced by Fusarium fungi, while TRI101/201 family enzymes play a crucial role in detoxification through acetylation. Studies on the substrate specificity and catalytic kinetics of TRI101/201 have revealed distinct kinetic characteristics, with significant differences observed in catalytic efficiency toward deoxynivalenol, while the catalytic efficiency for T-2 toxin remains relatively consistent. In this study, we used structural bioinformatics analysis and a molecular dynamics simulation workflow to investigate the mechanism underlying the differential catalytic activity of TRI101/201. The findings revealed that the binding stability between trichothecenes and TRI101/201 hinges primarily on a hydrophobic cage structure within the binding site. An intrinsic disordered loop, termed loop cover, defined the evolutionary patterns of the TRI101/201 protein family that are categorized into four subfamilies (V1/V2/V3/M). Furthermore, the unique loop displayed different conformations among these subfamilies' structures, which served to disrupt (V1/V2/V3) or reinforce (M) the hydrophobic cages. The disrupted cages enhanced the water exposure of the hydrophilic moieties of substrates like deoxynivalenol and thereby hindered their binding to the catalytic sites of V-type enzymes. In contrast, this water exposure does not affect substrates like T-2 toxin, which have more hydrophobic substituents, resulting in a comparable catalytic efficiency of both V- and M-type enzymes. Overall, our studies provide theoretical support for understanding the catalytic mechanism of TRI101/201, which shows how an intrinsic disordered loop could impact the protein-ligand binding and suggests a direction for rational protein design in the future.


Asunto(s)
Toxina T-2 , Tricotecenos , Tricotecenos/química , Tricotecenos/metabolismo , Tricotecenos/toxicidad , Sitios de Unión , Agua
5.
Cell Mol Life Sci ; 79(6): 296, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570209

RESUMEN

Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.


Asunto(s)
Canales de Potasio de Rectificación Interna , Animales , Humanos , Riñón/metabolismo , Potenciales de la Membrana , Ratones , Polimixinas/metabolismo , Polimixinas/toxicidad , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 343-355, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37143326

RESUMEN

Thermal stability is one of the most important properties of enzymes, which sustains life and determines the potential for the industrial application of biocatalysts. Although traditional methods such as directed evolution and classical rational design contribute greatly to this field, the enormous sequence space of proteins implies costly and arduous experiments. The development of enzyme engineering focuses on automated and efficient strategies because of the breakthrough of high-throughput DNA sequencing and machine learning models. In this review, we propose a data-driven architecture for enzyme thermostability engineering and summarize some widely adopted datasets, as well as machine learning-driven approaches for designing the thermal stability of enzymes. In addition, we present a series of existing challenges while applying machine learning in enzyme thermostability design, such as the data dilemma, model training, and use of the proposed models. Additionally, a few promising directions for enhancing the performance of the models are discussed. We anticipate that the efficient incorporation of machine learning can provide more insights and solutions for the design of enzyme thermostability in the coming years.


Asunto(s)
Ingeniería de Proteínas , Estabilidad de Enzimas
7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047800

RESUMEN

Sialidases are increasingly used in the production of sialyloligosaccharides, a significant component of human milk oligosaccharides. Elucidating the catalytic mechanism of sialidases is critical for the rational design of better biocatalysts, thereby facilitating the industrial production of sialyloligosaccharides. Through comparative all-atom molecular dynamics simulations, we investigated the structural dynamics of sialidases in Glycoside Hydrolase family 33 (GH33). Interestingly, several sialidases displayed significant conformational transition and formed a new cleft in the simulations. The new cleft was adjacent to the innate active site of the enzyme, which serves to accommodate the glycosyl acceptor. Furthermore, the residues involved in the specific interactions with the substrate were evolutionarily conserved in the whole GH33 family, highlighting their key roles in the catalysis of GH33 sialidases. Our results enriched the catalytic mechanism of GH33 sialidases, with potential implications in the rational design of sialidases.


Asunto(s)
Glicósido Hidrolasas , Neuraminidasa , Humanos , Neuraminidasa/metabolismo , Simulación de Dinámica Molecular , Dominio Catalítico , Catálisis
8.
J Biol Chem ; 295(47): 15902-15912, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32913118

RESUMEN

The octapeptins are lipopeptide antibiotics that are structurally similar to polymyxins yet retain activity against polymyxin-resistant Gram-negative pathogens, suggesting they might be used to treat recalcitrant infections. However, the basis of their unique activity is unclear because of the difficulty in generating high-resolution experimental data of the interaction of antimicrobial peptides with lipid membranes. To elucidate these structure-activity relationships, we employed all-atom molecular dynamics simulations with umbrella sampling to investigate the conformational and energetic landscape of octapeptins interacting with bacterial outer membrane (OM). Specifically, we examined the interaction of octapeptin C4 and FADDI-115, lacking a single hydroxyl group compared with octapeptin C4, with the lipid A-phosphoethanolamine modified OM of Acinetobacter baumannii Octapeptin C4 and FADDI-115 both penetrated into the OM hydrophobic center but experienced different conformational transitions from an unfolded to a folded state that was highly dependent on the structural flexibility of their respective N-terminal fatty acyl groups. The additional hydroxyl group present in the fatty acyl group of octapeptin C4 resulted in the molecule becoming trapped in a semifolded state, leading to a higher free energy barrier for OM penetration. The free energy barrier for the translocation through the OM hydrophobic layer was ∼72 kcal/mol for octapeptin C4 and 62 kcal/mol for FADDI-115. Our results help to explain the lower antimicrobial activity previously observed for octapeptin C4 compared with FADDI-115 and more broadly improve our understanding of the structure-function relationships of octapeptins. These findings may facilitate the discovery of next-generation octapeptins against polymyxin-resistant Gram-negative 'superbugs.'


Asunto(s)
Acinetobacter baumannii/química , Membrana Celular/química , Lipopéptidos/química , Simulación de Dinámica Molecular , Relación Estructura-Actividad
9.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769122

RESUMEN

Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.


Asunto(s)
Péptidos Antimicrobianos/química , Bases de Datos de Compuestos Químicos , Animales , Péptidos Antimicrobianos/clasificación , Péptidos Antimicrobianos/metabolismo , Humanos , Estructura Molecular
10.
J Antimicrob Chemother ; 75(12): 3534-3543, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32911540

RESUMEN

BACKGROUND: MDR bacteria represent an urgent threat to human health globally. Polymyxins are a last-line therapy against life-threatening Gram-negative 'superbugs', including Acinetobacter baumannii. Polymyxins exert antimicrobial activity primarily via permeabilizing the bacterial outer membrane (OM); however, the mechanism of interaction between polymyxins and the OM remains unclear at the atomic level. METHODS: We constructed a lipid A-based OM model of A. baumannii using quantitative membrane lipidomics data and employed all-atom molecular dynamics simulations with umbrella sampling techniques to elucidate the structure-interaction relationship and thermodynamics governing the penetration of polymyxins [B1 and E1 (i.e. colistin A) representing the two clinically used polymyxins] into the OM. RESULTS: Polymyxin B1 and colistin A bound to the A. baumannii OM by the initial electrostatic interactions between the Dab residues of polymyxins and the phosphates of lipid A, competitively displacing the cations from the headgroup region of the OM. Both polymyxin B1 and colistin A formed a unique folded conformation upon approaching the hydrophobic centre of the OM, consistent with previous experimental observations. Polymyxin penetration induced reorientation of the headgroups of the OM lipids near the penetration site and caused local membrane disorganization, thereby significantly increasing membrane permeability and promoting the subsequent penetration of polymyxin molecules into the OM and periplasmic space. CONCLUSIONS: The thermodynamics governing the penetration of polymyxins through the outer leaflet of the A. baumannii OM were examined and novel structure-interaction relationship information was obtained at the atomic and membrane level. Our findings will facilitate the discovery of novel polymyxins against MDR Gram-negative pathogens.


Asunto(s)
Acinetobacter baumannii , Antibacterianos/uso terapéutico , Humanos , Lípido A , Lipidómica , Simulación de Dinámica Molecular , Polimixinas
11.
Appl Microbiol Biotechnol ; 104(2): 661-673, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31822984

RESUMEN

We have recently derived a ß-N-acetylhexosaminidase, BbhI, from Bifidobacterium bifidum JCM 1254, which could regioselectively synthesize GlcNAcß1-3Galß1-4Glc with a yield of 44.9%. Here, directed evolution of BbhI by domain-targeted mutagenesis was carried out. Firstly, the GH20 domain was selected for random mutagenesis using MEGAWHOP method and a small library of 1300 clones was created. A total of 734 colonies with reduced hydrolytic activity were isolated, and three mutants with elevated transglycosylation yields, GlcNAcß1-3Galß1-4Glc yields of 68.5%, 74.7%, and 81.1%, respectively, were obtained. Subsequently, nineteen independent mutants were constructed according to all the mutation sites in these three mutants. After transglycosylation analysis, Asp714 and Trp773 were identified as key residues for improvement in transglycosylation ability and were chosen for the second round of directed evolution by site-saturation mutagenesis. Two most efficient mutants D714T and W773R that acted as trans-ß-N-acetylhexosaminidase were finally achieved. D714T with the substitution at the putative nucleophile assistant residue Asp714 by threonine showed high yield of 84.7% with unobserved hydrolysis towards transglycosylation product. W773R with arginine substitution at Trp773 residue locating at the entrance of catalytic cavity led to the yield up to 81.8%. The kcat/Km values of D714T and W773R for hydrolysis of pNP-ß-GlcNAc displayed drastic decreases. NMR investigation of protein-substrate interaction revealed an invariable mode of the catalytic cavity of D714T, W773R, and WT BbhI. The collective motions of protein model showed the mutations Thr714 and Arg773 exerted little effect on the dynamics of the inside but a large effect on the dynamics of the outside of catalytic cavity.


Asunto(s)
Bifidobacterium bifidum/enzimología , Mutagénesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo , Bifidobacterium bifidum/genética , Evolución Molecular Dirigida , Cinética , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/química , beta-N-Acetilhexosaminidasas/química
12.
Mol Biol Rep ; 46(5): 5443-5454, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31359382

RESUMEN

PoCel12A, PoCel12B, and PoCel12C are genes that encode glycoside hydrolase family 12 (GH12) enzymes in Penicillium oxalicum. PoCel12A and PoCel12B are typical GH12 enzymes that belong to fungal subfamilies 12-1 and 12-2, respectively. PoCel12C contains a low-complexity region (LCR) domain, which is not found in PoCel12A or PoCel12B and independent of fungal subfamily 12-1 or 12-2. Recombinant enzymes (named rCel12A, rCel12B and rCel12C) demonstrate existing diversity in the substrate specificities. Although most members in GH family 12 are typical endoglucanases and preferentially hydrolyze ß-1,4-glucan (e.g., carboxymethylcellulose), recombinant PoCel12A is a non-typical endo-(1-4)-ß-glucanase; it preferentially hydrolyzes mix-linked ß-glucan (barley ß-glucan, ß-1,3-1,4-glucan) and slightly hydrolyzes ß-1,4-glucan (carboxymethylcellulose). Recombinant PoCel12B possesses a significantly high activity against xyloglucan. A specific activity of rCel12B toward xyloglucan (239 µmol/min/mg) is the second-highest value known. Recombinant PoCel12C shows low activity toward ß-glucan, carboxymethylcellulose, or xyloglucan. All three enzymes can degrade phosphoric acid-swollen cellulose (PASC). However, the hydrolysis products toward PASC by enzymes are different: the main hydrolysis products are cellotriose, cellotetraose, and cellobiose for rCel12A, rCel12B, and rCel12C, correspondingly. A synergistic action toward PASC among rCel12A and rCel12B is observed, thereby suggesting a potential application for preparing enzyme cocktails used in lignocellulose hydrolysis.


Asunto(s)
Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato/genética , Celulasa/genética , Celulosa/análogos & derivados , Glucanos , Glicósido Hidrolasas/química , Concentración de Iones de Hidrógeno , Hidrólisis , Lignina , Penicillium/genética , Penicillium/metabolismo , Filogenia , Tetrosas , Triosas , Xilanos , beta-Glucanos/metabolismo
13.
Appl Microbiol Biotechnol ; 102(1): 249-260, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29103167

RESUMEN

XynB from Aspergillus niger ATCC1015 (AnXynB) is a mesophilic glycoside hydrolase (GH) family 11 xylanase which holds great potentials in a wide variety of industrial applications. In the present study, the catalytic activity and stability of AnXynB were improved by a combination of computational and experimental approaches. Virtual mutation and molecular dynamics simulations indicated that the introduction of Glu and Asn altered the interaction network at the - 3 subsite. Interestingly, the double mutant S41N/T43E displayed 72% increase in catalytic activity when compared to the wild type (WT). In addition, it also showed a better thermostability than the WT enzyme. Kinetic determination of the T43E and S41N/T43E mutants suggested that the higher xylanase activity is probably due to the increasing binding affinity of enzyme and substrate. Consequently, the enzyme activity and thermostability of AnXynB was both increased by selective site-directed mutagenesis at the - 3 subsite of its active site architecture which provides a good example for a successfully engineered enzyme for potential industrial application. Moreover, the molecular evolution approach adopted in this study led to the design of a library of sequences that captures a meaningful functional diversity in a limited number of protein variants.


Asunto(s)
Aminoácidos/genética , Aspergillus niger/enzimología , Aspergillus niger/genética , Dominio Catalítico/genética , Endo-1,4-beta Xilanasas/genética , Mutagénesis Sitio-Dirigida , beta-Glucosidasa/genética , Aminoácidos/química , Aminoácidos/metabolismo , Aspergillus niger/metabolismo , Catálisis , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Evolución Molecular , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , beta-Glucosidasa/metabolismo
14.
Biochem Biophys Res Commun ; 491(1): 236-240, 2017 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-28720496

RESUMEN

The role of protein dynamics in enzyme catalysis is one of the most active areas in current enzymological research. Here, using endoglucanase Cel5A from Thermobifida fusca (TfCel5A) as a model, we applied molecular dynamics simulations to explore the dynamic behavior of the enzyme upon substrate binding. The collective motions of the active site revealed that the mechanism of TfCel5A substrate binding can likely be described by the conformational-selection model; however, we observed that the conformations of active site residues changed differently along with substrate binding. Although most active site residues retained their native conformational ensemble, some (Tyr163 and Glu355) generated newly induced conformations, whereas others (Phe162 and Tyr189) exhibited shifts in the equilibration of their conformational distributions. These results showed that TfCel5A substrate binding relied on a hybrid mechanism involving induced fit and conformational selection. Interestingly, we found that TfCel5A active site could only partly rebalance its conformational dynamics upon substrate dissociation within the same simulation time, which implies that the conformational rebalance upon substrate dissociation is likely more difficult than the conformational selection upon substrate binding at least in the view of the time required. Our findings offer new insight into enzyme catalysis and potential applications for future protein engineering.


Asunto(s)
Actinobacteria/enzimología , Celulasa/química , Celulasa/ultraestructura , Celulosa/química , Modelos Químicos , Simulación de Dinámica Molecular , Sitios de Unión , Catálisis , Activación Enzimática , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
15.
J Chem Inf Model ; 57(2): 288-297, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28145703

RESUMEN

The temperature dependence of enzyme catalysis is highly debated. Specifically, how high temperatures induce enzyme inactivation has broad implications for both fundamental and applied science. Here, we explored the mechanism of the reversible thermal inactivation in glycoside hydrolase family 12 (GH12) using comparative molecular dynamics simulations. First, we investigated the distribution of structural flexibility over the enzyme and found that the active site was the general thermal-sensitive region in GH12 cellulases. The dynamic perturbation of the active site before enzyme denaturation was explored through principal-component analysis, which indicated that variations in the collective motion and conformational ensemble of the active site may precisely correspond to enzyme transition from its active form to the inactive form. Furthermore, the degree of dynamic perturbation of the active site was found to be negatively correlated with the melting temperatures of GH12 enzymes, further proving the importance of the dynamic stability of the active site. Additionally, analysis of the residue-interaction network revealed that the active site in thermophilic enzyme was capable of forming additional contacts with other amino acids than those observed in the mesophilic enzyme. These interactions are likely the key mechanisms underlying the differences in rigidity of the active site. These findings provide further biophysical insights into the reversible thermal inactivation of enzymes and potential applications in future protein engineering.


Asunto(s)
Dominio Catalítico , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Simulación de Dinámica Molecular , Temperatura , Activación Enzimática , Glicósido Hidrolasas/genética , Ingeniería de Proteínas
16.
Phys Chem Chem Phys ; 18(31): 21340-50, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27425569

RESUMEN

Understanding the molecular mechanism underlying protein thermostability is central to the process of efficiently engineering thermostable cellulases, which can provide potential advantages in accelerating the conversion of biomass into clean biofuels. Here, we explored the general factors that diversify enzyme thermostability in the glycoside hydrolase family 12 (GH12) using comparative molecular dynamics (MD) simulations coupled to a bioinformatics approach. The results indicated that protein stability is not equally distributed over the whole structure: the N-terminus is the most thermal-sensitive region of the enzymes with a ß-sandwich architecture and it tends to lose its secondary structure during the course of protein unfolding. Furthermore, we found that the total interaction energy within the N-terminus is appreciably correlated with enzyme thermostability. Interestingly, the internal interactions within the N-terminus are organized in a special amphipathic pattern in which a hydrophobic packing cluster and a hydrogen bonding cluster lie at the two ends of the N-terminus. Finally, bioinformatics analysis demonstrated that the amphipathic pattern is highly conserved in GH12 and besides that, the evolution of the amino acids in the N-terminal region is an inherent mechanism underlying the diversity of enzyme thermostability. Taken together, our results demonstrate that the N-terminus is generally the structure that determines enzyme thermostability in GH12, and thereby it is also an ideal engineering target. The dynameomics study of a protein family can give a general view of protein functions, which will offer a wide range of applications in future protein engineering.


Asunto(s)
Estabilidad de Enzimas , Glicósido Hidrolasas/química , Simulación de Dinámica Molecular , Fragmentos de Péptidos , Ingeniería de Proteínas
17.
Int J Antimicrob Agents ; 63(5): 107160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537721

RESUMEN

In a vast majority of bacteria, protozoa and plants, the methylerythritol phosphate (MEP) pathway is utilized for the synthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), which are precursors for isoprenoids. Isoprenoids, such as cholesterol and coenzyme Q, play a variety of crucial roles in physiological activities, including cell-membrane formation, protein degradation, cell apoptosis, and transcription regulation. In contrast, humans employ the mevalonate (MVA) pathway for the production of IDP and DMADP, rendering proteins in the MEP pathway appealing targets for antimicrobial agents. This pathway consists of seven consecutive enzymatic reactions, of which 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (IspD) and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) catalyze the third and fifth steps, respectively. In this study, we characterized the enzymatic activities and protein structures of Helicobacter pylori IspDF and Acinetobacter baumannii IspD. Then, using the direct interaction-based thermal shift assay, we conducted a compound screening of an approved drug library and identified 27 hit compounds potentially binding to AbIspD. Among them, two natural products, rosmarinic acid and tanshinone IIA sodium sulfonate, exhibited inhibitory activities against HpIspDF and AbIspD, by competing with one of the substrates, MEP. Moreover, tanshinone IIA sodium sulfonate also demonstrated certain antibacterial effects against H. pylori. In summary, we identified two IspD inhibitors from approved ingredients, broadening the scope for antibiotic discovery targeting the MEP pathway.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Helicobacter pylori , Hemiterpenos , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/química , Compuestos Organofosforados/farmacología , Humanos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
18.
Cell Rep ; 43(7): 114410, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923457

RESUMEN

Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.

19.
J Mol Graph Model ; 124: 108571, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37487372

RESUMEN

Thermophilic enzymes are highly desired in industrial applications due to their efficient catalytic activity at high temperature. However, most enzymes exhibit inferior thermostability and it remains challenging to identify the optimal sites for designing mutations to improve protein stability. To tackle this issue, we integrated topological analysis and all-atom molecular dynamics simulations to efficiently pinpoint the thermally-unstable regions in protein structures. Using a protease CN2S8A as the model, we analyzed the intramolecular hydrogen bonding interactions between adjacent secondary structure elements, and then identified the topological weak spots of CN2S8A where weak hydrogen bonding interactions were formed. To examine the role of these sites in protein structural stability, we designed three virtual mutations at different weak spots and characterized the effects of these mutations on the structural properties of CN2S8A. The results showed that all three mutations increased the protein structural stability. In conclusion, these findings provide a novel method to identify the topological weak spots of proteins, with implications in the rational design of biocatalysts with superior thermostability.


Asunto(s)
Péptido Hidrolasas , Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , Simulación de Dinámica Molecular , Estabilidad de Enzimas , Proteínas/genética , Temperatura
20.
Biotechnol Biofuels Bioprod ; 16(1): 154, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853500

RESUMEN

BACKGROUND: Lignocellulose is the most abundant natural biomass resource for the production of biofuels and other chemicals. The efficient degradation of cellulose by cellulases is a critical step for the lignocellulose bioconversion. Understanding the structure-catalysis relationship is vital for rational design of more stable and highly active enzymes. Glycoside hydrolase (GH) family 5 is the largest and most functionally diverse group of cellulases, with a conserved TIM barrel structure. The important roles of the various loop regions of GH5 enzymes in catalysis, however, remain poorly understood. RESULTS: In the present study, we investigated the relationship between the loops surrounding active site architecture and its catalytic efficiency, taking TfCel5A, an enzyme from GH5_2 subfamily of Thermobifida fusca, as an example. Large-scale computational simulations and site-directed mutagenesis experiments revealed that three loops (loop 8, 3, and 7) around active cleft played diverse roles in substrate binding, intermediate formation, and product release, respectively. The highly flexible and charged residue triad of loop 8 was responsible for capturing the ligand into the active cleft. Severe fluctuation of loop 3 led to the distortion of sugar conformation at the - 1 subsite. The wobble of loop 7 might facilitate product release, and the enzyme activity of the mutant Y361W in loop 7 was increased by approximately 40%. CONCLUSION: This study unraveled the vital roles of loops in active site architecture and provided new insights into the catalytic mechanism of the GH5_2 cellulases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA