Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490195

RESUMEN

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Indoles/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Chem Rev ; 124(8): 5119-5166, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38619540

RESUMEN

Highly efficient coelectrolysis of CO2/H2O into syngas (a mixture of CO/H2), and subsequent syngas conversion to fuels and value-added chemicals, is one of the most promising alternatives to reach the corner of zero carbon strategy and renewable electricity storage. This research reviews the current state-of-the-art advancements in the coelectrolysis of CO2/H2O in solid oxide electrolyzer cells (SOECs) to produce the important syngas intermediate. The overviews of the latest research on the operating principles and thermodynamic and kinetic models are included for both oxygen-ion- and proton-conducting SOECs. The advanced materials that have recently been developed for both types of SOECs are summarized. It later elucidates the necessity and possibility of regulating the syngas ratios (H2:CO) via changing the operating conditions, including temperature, inlet gas composition, flow rate, applied voltage or current, and pressure. In addition, the sustainability and widespread application of SOEC technology for the conversion of syngas is highlighted. Finally, the challenges and the future research directions in this field are addressed. This review will appeal to scientists working on renewable-energy-conversion technologies, CO2 utilization, and SOEC applications. The implementation of the technologies introduced in this review offers solutions to climate change and renewable-power-storage problems.

3.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972965

RESUMEN

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Secuencia Conservada , Cricetinae , Microscopía por Crioelectrón , Epítopos/inmunología , Humanos , Ratones , Pruebas de Neutralización , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
4.
J Am Chem Soc ; 146(1): 979-987, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117691

RESUMEN

The development of metal-free and recyclable catalysts for significant yet challenging transformations of naturally abundant feedstocks has long been sought after. In this work, we contribute a general strategy of combining the rationally designed crystalline covalent organic framework (COF) with a newly developed chiral frustrated Lewis pair (CFLP) to afford chiral frustrated Lewis pair framework (CFLPF), which can efficiently promote the asymmetric olefin hydrogenation in a heterogeneous manner, outperforming the homogeneous CFLP counterpart. Notably, the metal-free CFLPF exhibits superior activity/enantioselectivity in addition to excellent stability/recyclability. A series of in situ spectroscopic studies, kinetic isotope effect measurements, and density-functional theory computational calculations were also performed to gain an insightful understanding of the superior asymmetric hydrogenation catalysis performances of CFLPF. Our work not only increases the versatility of catalysts for asymmetric catalysis but also broadens the reactivity of porous organic materials with the addition of frustrated Lewis pair (FLP) chemistry, thereby suggesting a new approach for practical and substantial transformations through the advancement of novel catalysts from both concept and design perspectives.

5.
J Hepatol ; 80(5): 714-729, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336348

RESUMEN

BACKGROUND & AIMS: Mechanisms behind the impaired response of antigen-specific B cells to therapeutic vaccination in chronic hepatitis B virus (HBV) infection remain unclear. The development of vaccines or strategies to overcome this obstacle is vital for advancing the management of chronic hepatitis B. METHODS: A mouse model, denominated as E6F6-B, was engineered to feature a knock-in of a B-cell receptor (BCR) that specifically recognizes HBsAg. This model served as a valuable tool for investigating the temporal and spatial dynamics of humoral responses following therapeutic vaccination under continuous antigen exposure. Using a suite of immunological techniques, we elucidated the differentiation trajectory of HBsAg-specific B cells post-therapeutic vaccination in HBV carrier mice. RESULTS: Utilizing the E6F6-B transfer model, we observed a marked decline in antibody-secreting cells 2 weeks after vaccination. A dysfunctional and atypical pre-plasma cell population (BLIMP-1+ IRF4+ CD40- CD138- BCMA-) emerged, manifested by sustained BCR signaling. By deploying an antibody to purge persistent HBsAg, we effectively prompted the therapeutic vaccine to provoke conventional plasma cell differentiation. This resulted in an enhanced anti-HBs antibody response and facilitated HBsAg clearance. CONCLUSIONS: Sustained high levels of HBsAg limit the ability of therapeutic hepatitis B vaccines to induce the canonical plasma cell differentiation necessary for anti-HBs antibody production. Employing a strategy combining antibodies with vaccines can surmount this altered humoral response associated with atypical pre-plasma cells, leading to improved therapeutic efficacy in HBV carrier mice. IMPACT AND IMPLICATIONS: Therapeutic vaccines aimed at combatting HBV encounter suboptimal humoral responses in clinical settings, and the mechanisms impeding their effectiveness have remained obscure. Our research, utilizing the innovative E6F6-B mouse transfer model, reveals that the persistence of HBsAg can lead to the emergence of an atypical pre-plasma cell population, which proves to be relevant to the potency of therapeutic HBV vaccines. Targeting the aberrant differentiation process of these atypical pre-plasma cells stands out as a critical strategy to amplify the humoral response elicited by HBV therapeutic vaccines in carrier mouse models. This discovery suggests a compelling avenue for further study in the context of human chronic hepatitis B. Encouragingly, our findings indicate that synergistic therapy combining HBV-specific antibodies with vaccines offers a promising approach that could significantly advance the pursuit of a functional cure for HBV.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Ratones , Humanos , Animales , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Vacunas contra Hepatitis B/uso terapéutico , Anticuerpos contra la Hepatitis B , Diferenciación Celular , Hepatitis B/prevención & control , Hepatitis B/tratamiento farmacológico
6.
J Virol ; 97(3): e0154522, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36786600

RESUMEN

Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases. IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.


Asunto(s)
Anexina A2 , Herpesvirus Suido 1 , Seudorrabia , Replicación Viral , Animales , Humanos , Ratones , Anexina A2/genética , Anexina A2/metabolismo , Herpesvirus Suido 1/metabolismo , Herpesvirus Suido 1/patogenicidad , Fosforilación , Seudorrabia/virología , Transporte de Proteínas
7.
Cerebellum ; 23(2): 329-339, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36790600

RESUMEN

The most common clinical manifestation of sepsis-related encephalopathy (SAE) is the deterioration of cognitive function. Besides, increasing evidence shows that SAE patients exhibit coordination and sensorimotor dysfunctions, suggesting that SAE affects motor function with unclear mechanism. In the present work, we explored the effects of SAE on cerebellar Purkinje cells (PCs) using cecal ligation and perforation (CLP), a standard model for inducing sepsis symptoms similar to those in human patients. Our results show that the sepsis can activate microglia in the cerebellum and promote the secretion of inflammatory factor TNF-α, which increases intrinsic excitability and synaptic transmission of PCs, inhibits the synaptic plasticity of PCs, and impairs motor learning of mice. These findings address how SAE changes PC functions, and thereby are of great significance to reveal pathophysiological feathers of human patients suffering from SAE.


Asunto(s)
Encefalopatía Asociada a la Sepsis , Sepsis , Humanos , Ratones , Animales , Células de Purkinje/fisiología , Microglía , Sepsis/complicaciones , Cerebelo/fisiología
8.
Inorg Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967129

RESUMEN

The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.

9.
Cell Mol Life Sci ; 80(8): 222, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37480402

RESUMEN

The molecular mechanisms controlling the transition from meiotic arrest to meiotic resumption in mammalian oocytes have not been fully elucidated. Single-cell omics technology provides a new opportunity to decipher the early molecular events of oocyte growth in mammals. Here we focused on analyzing oocytes that were collected from antral follicles in different diameters of porcine pubertal ovaries, and used single-cell M&T-seq technology to analyze the nuclear DNA methylome and cytoplasmic transcriptome in parallel for 62 oocytes. 10× Genomics single-cell transcriptomic analyses were also performed to explore the bi-directional cell-cell communications within antral follicles. A new pipeline, methyConcerto, was developed to specifically and comprehensively characterize the methylation profile and allele-specific methylation events for a single-cell methylome. We characterized the gene expressions and DNA methylations of individual oocyte in porcine antral follicle, and both active and inactive gene's bodies displayed high methylation levels, thereby enabled defining two distinct types of oocytes. Although the methylation levels of Type II were higher than that of Type I, Type II contained nearly two times more of cytoplasmic transcripts than Type I. Moreover, the imprinting methylation patterns of Type II were more dramatically divergent than Type I, and the gene expressions and DNA methylations of Type II were more similar with that of MII oocytes. The crosstalk between granulosa cells and Type II oocytes was active, and these observations revealed that Type II was more poised for maturation. We further confirmed Insulin Receptor Substrate-1 in insulin signaling pathway is a key regulator on maturation by in vitro maturation experiments. Our study provides new insights into the regulatory mechanisms between meiotic arrest and meiotic resumption in mammalian oocytes. We also provide a new analytical package for future single-cell methylomics study.


Asunto(s)
Multiómica , Oocitos , Femenino , Porcinos , Animales , Folículo Ovárico , Núcleo Celular , Ciclo Celular , Mamíferos
10.
Artículo en Inglés | MEDLINE | ID: mdl-38401093

RESUMEN

Objective: Analyzing the impact of nursing workforce development, training and standardization on hybrid operating theatres. Methods: Thirty nurses in the mixed operating room of the First Affiliated Hospital of Nanchang University from January 2021 to December 2021 were selected as the control group to receive routine nursing management and training methods and another thirty nurses were selected as the experimental group to receive nursing team construction, training and standardized management based on conventional methods. Nurses' theoretical and operational scores, nurses' satisfaction, surgeon satisfaction with nurses, and nursing service quality scores were compared between two groups at baseline and after intervention. Results: After the intervention, nurses in both groups had a significant improvement in theoretical and operational scores than those at baseline, and nurses in the experimental group had better scores than those in the control group, The difference was statistically significant (P = .002, P = .004). Nursing quality of surgical preparation, environmental management, surgical safety, and instrument management in the intervention group were significantly better than those at baseline and better than those in the control group. The difference was statistically significant (P = .001, P = .001, P = .001, P = .001). Satisfaction of nurses and doctors in the intervention group was significantly better than those at baseline and better than those in the control group. The difference was statistically significant (P = .002, P = .001). Conclusion: The effect of nursing team construction and training and standardized management of hybrid operating Room was ideal, which can improve nurses' theoretical knowledge and practical skills, and enhance the satisfaction of nurses and surgeons, providing patients with higher quality nursing services, which is worth adopting.

11.
Ecotoxicol Environ Saf ; 277: 116358, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653025

RESUMEN

Exposure to nicotine by cigarette smoking have shown strongly defectives on the physiological function of ovaries, which in turn leads to disorders of fertility in women. However, the potential molecular mechanisms remain to be elucidated. In this study, we notably found that nicotine was likely to specifically raise the expression of histone deacetylase 3 (HDAC3) to promote the apoptosis and autophagy of granulosa cells (GCs) and block follicular maturation. Moreover, prostaglandin E2 (PGE2) inhibited the apoptosis of GCs and facilitated follicular maturation, and nicotine appeared to inhibit PGE2 secretion by freezing the expression of cyclooxygenase 1 (COX1), which was the rate-limiting and essential enzyme for PGE2 synthesis. Epigenetically, the nicotine was observed to diminish the histone H3 lysine 9 acetylation (H3K9ac) level and compact the chromatin accessibility in -1776/-1499 bp region of COX1 by evoking the expression of HDAC3, with the deactivated Cas9-HDAC3/sgRNA system. Mechanistically, the COX1 protein was found to pick up and degrade the autophagy related protein beclin 1 (BECN1) to control the autophagy of GCs. These results provided a potential new molecular therapy to recover the damage of female fertility induced by nicotine from cigarette smoking.


Asunto(s)
Autofagia , Dinoprostona , Células de la Granulosa , Nicotina , Femenino , Autofagia/efectos de los fármacos , Animales , Nicotina/toxicidad , Células de la Granulosa/efectos de los fármacos , Dinoprostona/metabolismo , Ratones , Histona Desacetilasas/metabolismo , Folículo Ovárico/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/genética
12.
Arch Gynecol Obstet ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951261

RESUMEN

OBJECTIVE: To analyze the efficacy of levonorgestrelintrauterine system, Drospirenone & ethinylestradiol tablets (II), and dydrogesterone in preventing the recurrence of endometrial polyps after hysteroscopic endometrial polypectomy. METHODS: One hundred seventy patients who underwent hysteroscopic endometrial polypectomy in the Gynecology Department of Tianmen First People's Hospital in Hubei Province from January 2022 to June 2023 were randomly divided into the levonorgestrelintrauterine system group, Drospirenone & ethinylestradiol tablets (II) group, dydrogesterone group, and a control group. The recurrence rates, endometrial thickness, and menstrual volume changes at 6 and 12 months post-operation were compared among these four groups. RESULTS: The recurrence rates in the levonorgestrelintrauterine system group, Drospirenone & ethinylestradiol tablets (II) group, and dydrogesterone group were lower than the control group, with statistical significance (P < 0.01), with the levonorgestrelintrauterine system group having the lowest recurrence rate. The endometrial thickness at 6 and 12 months post-operation in the levonorgestrelintrauterine system group, Drospirenone & ethinylestradiol tablets (II) group, and dydrogesterone group was thinner than that of the control group and thinner than pre-operation, with statistical significance (P < 0.01). The menstrual volume at 3 months post-operation in the levonorgestrelintrauterine system group, Drospirenone & ethinylestradiol tablets (II) group, and dydrogesterone group was significantly less than the control group, and less than the pre-operation volume. CONCLUSION: Dydrogesterone, drospirenone & ethinylestradiol tablets (II), and levonorgestrelintrauterine system all play a role in preventing the recurrence of endometrial polyps, but levonorgestrelintrauterine system is significantly better than dydrogesterone and Drospirenone & ethinylestradiol tablets (II) in terms of postoperative recurrence rate, endometrial thickness, menstrual changes, and compliance, and is worth promoting in clinical application.

13.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612723

RESUMEN

Bone morphogenetic protein 2 (BMP2) has been reported to regulate adipogenesis, but its role in porcine beige adipocyte formation remains unclear. Our data reveal that BMP2 is significantly induced at the early stages of porcine beige adipocyte differentiation. Additionally, supplementing rhBMP2 during the early stages, but not the late stages of differentiation, significantly enhances porcine SVF adipogenesis, thermogenesis, and proliferation. Furthermore, compared to the empty plasmid-transfected-SVFs, BMP2-overexpressed SVFs had the enhanced lipid accumulation and thermogenesis, while knockdown of BMP2 in SVFs exhibited the opposite effect. The RNA-seq of the above three types of cells revealed the enrichment of the annotation of thermogenesis, brown cell differentiation, etc. In addition, the analysis also highlights the significant enrichment of cell adhesion, the MAPK cascade, and PPARγ signaling. Mechanistically, BMP2 positively regulates the adipogenic and thermogenic capacities of porcine beige adipocytes by activating PPARγ expression through AKT/mTOR and MAPK signaling pathways.


Asunto(s)
Adipogénesis , Proteínas Proto-Oncogénicas c-akt , Porcinos , Animales , Adipogénesis/genética , Proteína Morfogenética Ósea 2/genética , PPAR gamma , Transducción de Señal , Serina-Treonina Quinasas TOR/genética
14.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203782

RESUMEN

At present, there is a research gap concerning the specific functions and mechanisms of the Notch gene family and its signaling pathway in jawless vertebrates. In this study, we identified a Notch1 homologue (Lr. Notch1) in the Lethenteron reissneri database. Through bioinformatics analysis, we identified Lr. Notch1 as the likely common ancestor gene of the Notch gene family in higher vertebrates, indicating a high degree of conservation in the Notch gene family and its signaling pathways. To validate the biological function of Lr. Notch1, we conducted targeted silencing of Lr. Notch1 in L. reissneri and analyzed the resultant gene expression profile before and after silencing using transcriptome analysis. Our findings revealed that the silencing of Lr. Notch1 resulted in differential expression of pathways and genes associated with signal transduction, immune regulation, and metabolic regulation, mirroring the biological function of the Notch signaling pathway in higher vertebrates. This article systematically elucidated the origin and evolution of the Notch gene family while also validating the biological function of Lr. Notch1. These insights offer valuable clues for understanding the evolution of the Notch signaling pathway and establish a foundation for future research on the origin of the Notch signaling pathway, as well as its implications in human diseases and immunomodulation.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Humanos , Animales , Filogenia , Bases de Datos Factuales , Inmunomodulación , Receptores Notch
15.
BMC Oral Health ; 24(1): 703, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890599

RESUMEN

BACKGROUND: Zinc has been proven to be effective against periodontitis, and also reported to reduce the risk of cardiovascular diseases (CVD). This study aims to explore the regulatory effect of zinc intake on the association between periodontitis and atherosclerotic cardiovascular disease (ASCVD). METHODS: This was a cross-sectional study based on the National Health and Nutrition Examination Survey (NHANES). Logistic regression model was used to explore the association between zinc-RDA or periodontitis and 10-year ASCVD risk ≥ 20%, and results were shown as odds ratio (OR) and 95% confidence interval (95% CI). The regulatory effect of zinc intake on the association between periodontitis and 10-year ASCVD risk ≥ 20% was also assessed using logistic regression model. Subgroup analysis was performed based on age, gender, obesity, education level, lipid-lowering therapy, and dental floss. RESULTS: 6,075 patients were finally included for analysis. Zinc intake reaching the recommended level (OR = 0.82, 95%CI: 0.69-0.98) and periodontitis (OR = 2.47, 95%CI: 2.04-3.00) were found to be associated with 0.82-fold and 2.47-fold odds of 10-year ASCVD risk ≥ 20%, respectively. In addition, we found that the odds of 10-year ASCVD risk ≥ 20% was lower in patients with zinc intake reaching the recommended level than those without [OR (95%CI): 2.25 (1.81-2.80) vs. 2.72 (2.05-3.62)]. The similar regulatory effect was found in patients with age ≥ 60 years and < 60 years, in male and female, with or without obesity, in different education levels, with or without lipid lowering therapy, and with or without use of dental floss (all P < 0.05). CONCLUSIONS: This study found the regulatory effect of adequate zinc intake on the association between periodontitis and ASCVD, providing guidance for periodontitis patients to decrease the risk of ASCVD.


Asunto(s)
Aterosclerosis , Encuestas Nutricionales , Periodontitis , Zinc , Humanos , Estudios Transversales , Masculino , Femenino , Zinc/uso terapéutico , Persona de Mediana Edad , Aterosclerosis/prevención & control , Adulto , Anciano , Factores de Riesgo , Estados Unidos/epidemiología
16.
Plant Foods Hum Nutr ; 79(1): 73-82, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38006459

RESUMEN

Fruits of Syzygium jambos (L.) are recognized as a "food", exhibiting significant antidiabetic activities. However, the α-glucosidase inhibition of the components from Syzygium jambos (L.) have not yet been investigated. In this study, a total of 14 compounds were isolated from Syzygium jambos (L.) Alston, eight of which showed significant inhibitory effects on α-glucosidase, with IC50 values in the range of 0.011-0.665 mM. Notably, compounds 1-3 (IC50: 0.013, 0.011 and 0.030 mM, respectively) exhibited much stronger activity than acarbose (IC50: 2.329 ± 0.109 mM). The enzyme kinetics study indicated that compound 1 was an uncompetitive inhibitor, and compounds 2-8 were mixed-type inhibitors. Moreover, the interactions between compounds and α-glucosidase were investigated by molecular docking, which further revealed that the number of olefin double bonds and 2-COOH of heptadeca-phenols had a notable effect on the α-glucosidase inhibitory activity. This study demonstrated that Syzygium jambos (L.) fruit might serve as a functional food for the prevention of diabetes mellitus.


Asunto(s)
Syzygium , Syzygium/química , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Inhibidores Enzimáticos , Análisis Espectral , Inhibidores de Glicósido Hidrolasas/farmacología , Cinética
17.
Small ; 19(3): e2205416, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36344460

RESUMEN

Due to the rapid growth in the demand for high-energy-density Lithium (Li) batteries and insufficient global Li reserves, the anode-free Li metal batteries are receiving increasing attention. Various strategies, such as surface modification and structural design of copper (Cu) current collectors, have been proposed to stabilize the anode-free Li metal batteries. Unfortunately, the mechanism of Li deposition on the Cu surfaces with the different Miller indices is poorly understood, especially on the atomic scale. Here, the large-scale molecular dynamics simulations of Li deposition on the Cu substrates are performed in the anode-free Li metal batteries. The results show that the surface properties of the Li panel can be altered through the different Cu substrate surfaces. Through surface similarity analysis, potential energy distributions,and inhomogeneous deposition simulations, it is found that the Li atoms exhibit different potential energy variances and kinetic characteristics on the different Cu surfaces. Furthermore, a proposal to reduce the fraction of the (110) facet in commercial Cu foils is made to improve the reversibility and stability of Li plating/stripping in the anode-free Li metal batteries.

18.
Acc Chem Res ; 55(1): 75-86, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918905

RESUMEN

Adsorptive separation plays a critical role in chemical, food, pharmaceutical, and environmental industries, as well as in many other industrial areas. Adsorbents are most important for adsorptive separation and undergo adsorption and desorption processes to accomplish the specific tasks of separation. In the process of adsorption, adsorbates diffuse into the pore spaces of adsorbents through pore openings, adsorb on active sites via physical or chemical interactions, and subsequently are regenerated by temperature or pressure swings during desorption. In the process of adsorption and desorption, however, the requirements for pore structures and surface properties of adsorbents are different. In general, adsorbents with small pore openings can realize selective adsorption and do not favor desorption; on the other hand, adsorbents with large pore openings are efficient in desorption but at the expense of adsorption selectivity. Remarkably, active sites possessing strong interactions with adsorbates contribute to high selectivity for adsorption, while desorption becomes difficult. The trade-off between adsorption and desorption presents an enormous challenge to develop high-efficiency adsorbents. Restricted by their fixed structures and surface properties, conventional adsorbents are unable to meet the demands of adsorption and desorption processes simultaneously.To confront the obstacles, the development of advanced adsorbents to meet the demand of adsorptive separation are urgent. A key strategy to address such issues lies in dynamically adjusting the pore structures or the surface properties of adsorbents with controllability according to the demands of adsorption/desorption. For instance, pursuant to the requirements of varying pore structures during adsorption/desorption, the pore openings of adsorbents can be customized through dynamic structural change of the decorated stimuli-sensitive motifs by suitable external intervention. In addition, the active sites within the adsorbents can be exposed to enhance the adsorption selectivity or sheltered to accelerate the desorption through stimuli-triggered adsorbent-adsorbate interactions. Hence, we proposed a concept of process-oriented smart adsorbents (POSAs) on the basis of the requirements of the adsorption/desorption processes. The design and development of such POSAs are based on three aspects, namely, pore openings, pore spaces, and adsorption sites of adsorbents.In this Account, we present the progress in the development of POSAs according to the demands of adsorption/desorption processes. A series of POSAs with incorporated stimuli-sensitive motifs were successfully achieved. The versatility of incorporated motifs allows them to tune the pore structures and surface properties of adsorbents dynamically and further to enhance the adsorption and desorption efficiency simultaneously. Based on the concept of POSAs, we hope that this Account could contribute to the development of high-efficiency adsorbents and ultimately promote their applications in practical industrial separation. Moreover, we present an outlook on future trends and challenges on the road toward the development and applications of POSAs.

19.
FASEB J ; 36(2): e22102, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34972243

RESUMEN

Myofibroblasts, or activated fibroblasts, play a critical role in the process of renal fibrosis. Targeting myofibroblasts to inhibit their activation or induce specific cell death has been considered to be an effective strategy to attenuate renal fibrosis. However, specific biomarkers for myofibroblasts are needed to ensure the efficacy of these strategies. Here, we verified that CD248 was mainly expressed in myofibroblasts in patients with chronic kidney disease, which was inversely correlated with renal function. The same result was also confirmed in renal fibrotic mice induced by unilateral ureteral obstruction and aristolochic acid nephropathy. By using an antibody-drug conjugate (ADC) named IgG78-DM1, in which maytansinoid (DM1) was linked to a fully human antibody IgG78 through an uncleavable SMCC linker, we demonstrated that it could effectively bind with and kill CD248+ fibroblasts in vitro and alleviate renal fibrosis in mice models. Besides, we confirmed that IgG78-DM1 had qualified biosafety in vivo. Our results confirmed that CD248 can be used as a specific marker for myofibroblasts, and specific killing of CD248+ myofibroblasts by IgG78-DM1 has excellent anti-fibrotic effect in renal fibrotic mice. Our study expanded the application of ADC and provided a novel strategy for the treatment of renal fibrosis.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Sistemas de Liberación de Medicamentos , Inmunoconjugados/farmacología , Maitansina/farmacología , Miofibroblastos/metabolismo , Insuficiencia Renal Crónica , Animales , Fibrosis , Masculino , Ratones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo
20.
PLoS Comput Biol ; 18(12): e1010744, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36534703

RESUMEN

The synergy between human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (MTB) could accelerate the deterioration of immunological functions. Previous studies have explored the pathogenic mechanisms of HIV mono-infection (HMI), MTB mono-infection (MMI) and MTB/HIV co-infection (MHCI), but their similarities and specificities remain to be profoundly investigated. We thus designed a computational framework named IDEN to identify gene pairs related to these states, which were then compared from different perspectives. MMI-related genes showed the highest enrichment level on a greater number of chromosomes. Genes shared by more states tended to be more evolutionarily conserved, posttranslationally modified and topologically important. At the expression level, HMI-specific gene pairs yielded higher correlations, while the overlapping pairs involved in MHCI had significantly lower correlations. The correlation changes of common gene pairs showed that MHCI shared more similarities with MMI. Moreover, MMI- and MHCI-related genes were enriched in more identical pathways and biological processes, further illustrating that MTB may play a dominant role in co-infection. Hub genes specific to each state could promote pathogen infections, while those shared by two states could enhance immune responses. Finally, we improved the network proximity measure for drug repurposing by considering the importance of gene pairs, and approximately ten drug candidates were identified for each disease state.


Asunto(s)
Coinfección , Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Humanos , VIH , Tuberculosis/tratamiento farmacológico , Tuberculosis/genética , Reposicionamiento de Medicamentos , Mycobacterium tuberculosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA