Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 148(2): 305-315, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36541436

RESUMEN

Microcystins (MCs) are highly toxic peptides produced by cyanobacteria during algal blooms. Microcystin-leucine-arginine (MC-LR) is the most toxic and common MC variant with major effects on human and animal health upon exposure. MC-LR detection has become critical to ensure water safety, therefore robust and reliable analytical methods are needed. This work reports the development of a simple and optimized Molecularly Imprinted Nanoparticle-Based Assay (MINA) for MC-LR detection in water. Molecularly Imprinted Nanoparticles (MINs) were prepared by solid-phase polymerization on glass beads conjugated to MC-LR through (3-aminopropyl) triethoxysilane (APTES) via amide bonding. APTES-modified glass beads were obtained under optimized conditions to maximize the density of surface amino groups available for MC-LR conjugation. Two quinary mixtures of acrylic monomers differing in charge, polarity, and functionality were selected from molecular docking calculations and used to obtain MINs for MC-LR recognition using N,N'-methylene-bis-acrylamide (BIS) as the crosslinking agent. MINs were immobilized by physical adsorption onto 96-well polystyrene microplate and evaluated as per their rebinding capacity toward the analyte by using a covalent conjugate between MC-LR and the enzyme horseradish peroxidase (HRP). Experimental conditions for the MINs immobilization protocol, HRP-MC-LR concentration, and composition of the blocking solution were set to maximize the colorimetric response of the MINs compared to non-treated wells. Optimized conditions were then applied to conduct competitive MINAs with the HRP-MC-LR conjugate and the free analyte, which confirmed the preferential binding of MC-LR to the immobilized MINs for analyte concentrations ranging from 1 × 10-5 nmol L-1 to 100 nmol L-1. The best competitive MINA showed a limit of detection of 2.49 × 10-4 nmol L-1 and coefficients of variation less than 10% (n = 6), which are auspicious for the use of MINs as analytical tools for MC-LR detection below the permissible limits issued by WHO for safe water consumption (1.00 nmol L-1). This assay also proved to be selective to the analyte in cross-reactivity studies with two analogous microcystins (MC-RR and MC-YR). Analyses of lagoon and drinking water samples enriched with MC-LR revealed strong matrix effects that reduce the MINA response to the analyte, thus suggesting the need for sample pretreatment methods in future development in this subject.


Asunto(s)
Agua Potable , Microcistinas , Agua Potable/análisis , Toxinas Marinas , Microcistinas/análisis , Simulación del Acoplamiento Molecular
2.
Org Biomol Chem ; 21(38): 7782-7790, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37705355

RESUMEN

Surface-modified PAMAM dendrimers have important applications in drug delivery, yet a gap remains about the role that surface functionalization plays on their cell internalization capacity. We examined the cell internalization kinetics of PAMAM dendrimers that were surface-modified with acetyl, folate and poly(ethylene glycol), as model functional groups differing in size, charge, and chemical functionality. Dendrimers with 25% functionalization were internalized by HEK cells, but with slower rates and lower maximum uptakes than the native dendrimer between 1-6 h of incubation. Dendrimers with 50% functionalization exhibited negligible internalization capacities at all incubation times. Molecular dynamics simulations revealed that the solvent accessibility of the cationic surface charges is a key factor affecting cell internalization, unlike the total charge, functionality or size of surface-modified PAMAM dendrimers. These findings provide valuable insights to assist the design of PAMAM-based systems for drug delivery applications.


Asunto(s)
Dendrímeros , Dendrímeros/química , Sistemas de Liberación de Medicamentos , Polietilenglicoles/química , Solventes
3.
J Chem Inf Model ; 63(4): 1338-1350, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36757339

RESUMEN

Vildagliptin (VIL) is an antidiabetic drug that inhibits dipeptidyl peptidase-4 (DPP4) through a covalent mechanism. The molecular bases for this inhibitory process have been addressed experimentally and computationally. Nevertheless, relevant issues remain unknown such as the roles of active site protonation states and conserved water molecules nearby the catalytic center. In this work, molecular dynamics simulations were applied to examine the structures of 12 noncovalent VIL-DPP4 complexes encompassing all possible protonation states of three noncatalytic residues (His126, Asp663, Asp709) that were inconclusively predicted by different computational tools. A catalytically competent complex structure was only achieved in the system with His126 in its ε-form and nonconventional neutral states for Asp663/Asp709. This complex suggested the involvement of one water molecule in the catalytic process of His740/Ser630 activation, which was confirmed by QM/MM simulations. Our findings support the suitability of a novel water-mediated mechanism in which His740/Ser630 activation occurs concertedly with the nucleophilic attack on VIL and the imidate protonation by Tyr547. Then, the restoration of His740/ Tyr547 protonation states occurs via a two-water hydrogen bonding network in a low-barrier process, thus describing the final step of the catalytic cycle for the first time. Additionally, two hydrolytic mechanisms were proposed based on the hydrogen bonding networks formed by water molecules and the catalytic residues along the inhibitory mechanism. These findings are valuable to unveil the molecular features of the covalent inhibition of DPP4 by VIL and support the future development of novel derivatives with improved structural or mechanistic profiles.


Asunto(s)
Dipeptidil Peptidasa 4 , Agua , Vildagliptina , Dominio Catalítico , Agua/química , Simulación de Dinámica Molecular
4.
J Chem Inf Model ; 62(24): 6844-6856, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36074453

RESUMEN

Microtubule (MT) stabilization is an attractive pharmacological strategy to hamper the progress of neurodegenerative diseases. In this regard, seeking peptides with MT-stabilizing properties has awoken great interest. This work reports the rational discovery of two structurally related MT-stabilizing octapeptides using a combination of protein-peptide docking, conventional molecular dynamics, Gaussian accelerated molecular dynamics (GaMD), and tubulin polymerization assays. FASTA sequences for ∼1000 peptides were crafted from single and double mutants of davunetide (NAP) and docked against the Taxol (TX) site on an octameric MT model representing a portion of the MT wall. Docked peptides were rescored after MM minimization and binding free energy refinement through single-point MM/GBSA calculations. The 60 best-ranked peptides were subjected to 50 ns MD simulations on peptide-MT complexes at the terminal TX site in the octameric Tau-MT model resulting in 11 complexes with occupancies greater than 99% and peptide-protein binding free energies less than -40 kcal/mol. Selected peptides were then examined through 300 ns GaMD simulations in complexes containing two identical ligands at the terminal and intermediate TX sites in the Tau-MT model to account for the differential association of MT-binding peptides to different regions of the MT structure. Six candidates showed a favorable MT-binding potential based on the analysis of interaction frequencies and relative mobilities of the complex components, suggesting a pivotal role of Arg278, Gln281, and Arg369 residues for peptides recognition. Four candidates were predicted to preserve an adequate balance of longitudinal and lateral interactions between tubulin dimers in peptide-MT complexes such that MT-stabilizing effects could be expected. MT polymerization experiments confirmed that four peptides (HAPVSIHQ, NYPVSIHQ, NWPVSIWQ, HAPVSIIQ) exhibit MT-stabilizing activity in vitro with NWPVSIWQ (P43) and HAPVSIIQ (P52) being the most active. Tryptophan quenching assays verified that P43 and P52 bind to nonpolymeric tubulin, whereas viability experiments on HEK cells confirmed their safety to pursue future pharmacological studies. The results herein presented are valuable to making progress in the rational design of MT-stabilizing peptides.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacología , Paclitaxel/análisis , Paclitaxel/metabolismo , Unión Proteica , Simulación de Dinámica Molecular
5.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233069

RESUMEN

Drimys winteri J.R. (Winteraceae) produce drimane sesquiterpenoids with activity against Candida yeast. In this work, drimenol, polygodial (1), isotadeonal (2), and a new drimane α,ß-unsaturated 1,4-dialdehyde, named winterdial (4), were purified from barks of D. winteri. The oxidation of drimenol produced the monoaldehyde drimenal (3). These four aldehyde sesquiterpenoids were evaluated against six Candida species isolated from candidemia patients in Chilean hospitals. Results showed that 1 displays fungistatic activity against all yeasts (3.75 to 15.0 µg/mL), but irritant effects on eyes and skin, whereas its non-pungent epimer 2 has fungistatic and fungicide activities at 1.9 and 15.0 µg/mL, respectively. On the other hand, compounds 3 and 4 were less active. Molecular dynamics simulations suggested that compounds 1-4 are capable of binding to the catalytic pocket of lanosterol 14-alpha demethylase with similar binding free energies, thus suggesting a potential mechanism of action through the inhibition of ergosterol synthesis. According to our findings, compound 2 appears as a valuable molecular scaffold to pursue the future development of more potent drugs against candidiasis with fewer side effects than polygodial. These outcomes are significant to broaden the alternatives to treat fungal infections with increasing prevalence worldwide using natural compounds as a primary source for active compounds.


Asunto(s)
Candidemia , Fungicidas Industriales , Sesquiterpenos , Aldehídos/farmacología , Candida , Chile , Ergosterol , Humanos , Irritantes , Lanosterol , Sesquiterpenos Policíclicos , Sesquiterpenos/química
6.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361785

RESUMEN

Fungal biotransformation is an attractive synthetic strategy to produce highly specific compounds with chemical functionality in regions of the carbon skeleton that are not easily activated by conventional organic chemistry methods. In this work, Cladosporium antarcticum isolated from sediments of Glacier Collins in Antarctica was used to obtain novel drimane sesquiterpenoids alcohols with activity against Candida yeast from drimendiol and epidrimendiol. These compounds were produced by the high-yield reduction of polygodial and isotadeonal with NaBH4 in methanol. Cladosporium antarcticum produced two major products from drimendiol, identified as 9α-hydroxydrimendiol (1, 41.4 mg, 19.4% yield) and 3ß-hydroxydrimendiol (2, 74.8 mg, 35% yield), whereas the biotransformation of epidrimendiol yielded only one product, 9ß-hydroxyepidrimendiol (3, 86.6 mg, 41.6% yield). The products were purified by column chromatography and their structure elucidated by NMR and MS. The antifungal activity of compounds 1-3 was analyzed against Candida albicans, C. krusei and C. parapsilosis, showing that compound 2 has a MIC lower than 15 µg/mL against the three-pathogenic yeast. In silico studies suggest that a possible mechanism of action for the novel compounds is the inhibition of the enzyme lanosterol 14α-demethylase, affecting the ergosterol synthesis.


Asunto(s)
Alcoholes , Sesquiterpenos , Alcoholes/metabolismo , Candida , Antifúngicos/química , Sesquiterpenos/química , Candida albicans , Biotransformación , Pruebas de Sensibilidad Microbiana
7.
J Chem Inf Model ; 61(11): 5682-5691, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34730359

RESUMEN

Preserving the integrity of neuronal microtubules (MTs) has emerged as a promising strategy to inhibit the progression of neurodegenerative disorders such as Alzheimer's disease. Such a goal could be achieved by peptides that mimic the functional role of Tau, an MT-associated protein that stabilizes MTs by dynamically binding to their outer surface. This work examines the binding properties and MT-stabilizing potential of a 27-amino acid Tau oligopeptide from 300 ns Gaussian-accelerated molecular dynamics simulations and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations on octameric MT models bound to two equivalent and independent Tau peptides. Bound peptides adopted extended conformations that are highly consistent with cryo-electron microscopy reports for full-length Tau bound to MTs. Anchoring points in three consecutive tubulin subunits were identified, with a relevant contribution of the Ser419-Val435 region to α-tubulin. Tau peptides strengthen the longitudinal protein-protein contacts within the MT lattice and exert a cooperative MT-stabilizing effect in MT complexes simultaneously bonded to taxol or peloruside A. Ser phosphorylation results in a larger peptide mobility, altered interaction profiles, and MT destabilization, which are in line with the loss of MT integrity resulting from the post-translational hyperphosphorylation of Tau. Our results shed light on the MT-stabilizing potential of Tau-mimetic peptides to act as novel neuroprotective agents targeting MTs.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Microscopía por Crioelectrón , Oligopéptidos , Paclitaxel/farmacología
8.
J Chem Inf Model ; 61(4): 2048-2061, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33784106

RESUMEN

Nanoscale molecularly imprinted polymers (nanoMIPs) are powerful molecular recognition tools with broad applications in the diagnosis, prognosis, and treatment of complex diseases. In this work, fully atomistic molecular dynamics (MD) simulations are used to assist the design of nanoMIPs with recognition capacity toward l-fucose and d-mannose as prototype disease biomarkers. MD simulations were conducted on prepolymerization mixtures containing different molar ratios of the monomers N-isopropylacrylamide (NIPAM), methacrylamide (MAM), and (4-acrylamidophenyl)(amino)methaniminium acetate (AB) and fixed molar ratios of the cross-linker ethylene glycol dimethacrylate (EGDMA) in explicit acetonitrile as the porogenic solvent. Prepolymerization mixtures containing ternary mixtures of NIPAM (50%), MAM (25%), and AB (25%) exhibit the best imprinting potential for both l-fucose and d-mannose, as they maximize (i) the stability of template-monomer plus template-cross-linker interactions, (ii) the number of functional monomers plus cross-linkers organized around the template, and (iii) the number of hydrogen bonds participating in template recognition. The studied prepolymerization mixtures exhibit an overall increased recognition capacity toward d-mannose over l-fucose, which is attributed to the higher hydrogen-bonding capacity of the former template. Our results are valuable to guide the synthesis of efficient nanoMIPs for sugar recognition and provide a computational framework extensible to any other template, monomer, or cross-linker combination, thus constituting a promising strategy for the rational design of molecularly imprinted materials.


Asunto(s)
Impresión Molecular , Fucosa , Manosa , Simulación de Dinámica Molecular , Polímeros
9.
J Chem Inf Model ; 61(5): 2463-2474, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33929203

RESUMEN

E-selectin is a cell-adhesion receptor with specific recognition capacity toward sialo-fucosylated Lewis carbohydrates present in leukocytes and tumor cells. E-selectin interactions mediate the progress of inflammatory processes and tumor metastasis, which aroused the interest in using this protein as a biomolecular target to design glycomimetic inhibitors for active targeting or therapeutic purposes. In this work, we report the rational discovery of two novel glycomimetic peptides targeting E-selectin based on mutations of the reference selectin-binding peptide IELLQAR. Sixteen single or double mutants at Ile1, Leu3, Leu4, and Arg7 residues were evaluated as potential candidates for E-selectin targeting using 50 ns molecular dynamics (MD) simulations. Nine peptides showing a stable association with the functional pocket were modified by adding a cysteine residue to the N-terminus to confer versatility for further chemical conjugation. Subsequent 50 ns MD simulations resulted in five cysteine-modified peptides with retained or improved E-selectin binding potential. Then, 300 ns accelerated MD (aMD) simulations were used to examine the binding properties of the best five cysteine-modified peptides. CIEELQAR and CIELFQAR exhibit the most selective association with the functional pocket of E-selectin, as revealed by potential of mean force profiles. Microscale thermophoresis experiments confirmed the E-selectin binding capacity of the selected peptides with KD values in the low micromolar range (CIEELQAR KD = 35.0 ± 1.4 µM; CIELFQAR KD = 16.4 ± 0.7 µM), which are 25-fold lower than the reported value for the native ligand sLex (KD = 878 µM). Our findings support the potential of CIEELQAR and CIELFQAR as novel E-selectin-targeting peptides with high recognition capacity and versatility for chemical conjugation, which are critical for enabling future applications in active targeting.


Asunto(s)
Selectina E , Péptidos , Adhesión Celular , Ligandos , Antígeno Sialil Lewis X
10.
J Chem Inf Model ; 60(8): 4076-4084, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32687349

RESUMEN

Plocabulin is a novel microtubule (MT) destabilizer agent with potent antineoplastic activity. This compound binds to the maytansine site at the longitudinal interface between tubulin dimers and exerts a hinge-like effect that disrupts normal microtubule assembly. Plocabulin has emerged as a valuable model for the rational design of novel MT destabilizers because of its unique structural and mechanistic features. To make progress on this matter, detailed molecular-level understanding of the ligand-protein interactions responsible for plocabulin association and the conformation and energetic effects arising from plocabulin binding on the longitudinal interaction between tubulin dimers must be provided. In this work, fully atomistic MD simulations and MM/GBSA binding free-energy calculations were used to examine the association of plocabulin to one or two tubulin dimers in longitudinal arrangement. Our results revealed that plocabulin binding is favored by the addition of a second tubulin dimer and that this ligand promotes the assembly of curved tetrameric arrangements with strengthened longitudinal interdimeric interactions compared to ligand-free systems. The applicability of these findings to the rational discovery of novel MT destabilizers was tested using MD and MM/GBSA calculations as filtering tools to narrow the results of virtual screening among an FDA-approved drug database. Our results confirmed that tight-binding ligands do not necessarily exert the expected conformational and energetic effects on longitudinal tubulin-tubulin interactions, which is a matter to consider in future design strategies.


Asunto(s)
Policétidos , Tubulina (Proteína) , Microtúbulos , Pironas
11.
J Chem Inf Model ; 60(2): 995-1004, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31876421

RESUMEN

Neuroligin-1 (NL1) is a postsynaptic cell adhesion protein that plays a crucial role in synapsis and signaling between neurons. Due to its clustered distribution in synaptic clefts, NL1 appears as a novel potential site for synaptic targeting purposes. In this work, in silico protein topography analysis was employed to identify two prospective binding sites on the NL1 dimer surface in the 2:2 synaptic adhesion complex with ß-neurexin (PDB code 3B3Q ). Receptor-based rational design, cell-penetrating capability prediction, molecular docking, molecular dynamics simulations, and binding free energy calculations were used to identify five heptapeptides candidates with favorable predicted profiles as non cell-penetrating NL1-binding agents. Preliminary in vitro colocalization assays with NL1-transfected HEK 293 cells confirmed that peptides remain in the extracellular space without inducing detectable changes in cell morphology. The highest NL1-colocatization capability was attained by the peptide ADEAIVA, which appears as a promising candidate for the future development of specific NL1-targeting systems as part of synapse-directed therapies against central nervous system diseases.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Diseño de Fármacos , Péptidos/metabolismo , Péptidos/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular Neuronal/química , Simulación por Computador , Células HEK293 , Humanos , Modelos Moleculares , Péptidos/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína
12.
J Chem Inf Model ; 60(2): 915-922, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31841000

RESUMEN

Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate-dependent enzyme involved in the biosynthesis of valine, leucine, isoleucine, and lysine. Experimental evidence has shown that mutation of the Gln202 residue results in a decrease in the enzymatic activity, thus suggesting the main role of the carboligation catalyzed by AHAS. It has been postulated that this residue acts as an acid/base group, protonating the carbonyl oxygen from the 2-ketoacid substrate, during the carboligation reaction. However, previous studies have revealed that 2-ketoacid is not engaged in catalytically relevant interactions with ionizable groups that can act as an acid/base group during the catalysis. Therefore, it has been proposed that the carboligation reaction could occur through an intramolecular proton transfer without the assistance of an amino acid residue with acid-base properties. To decipher the role of Gln202, in this work, we studied the last two catalytic steps of the AHAS through quantum mechanics/molecular mechanics calculations using a full enzyme model of the wild-type AHAS and the Gln202Ala mutant. Our results indicate that the carboligation mechanism occurs through an intramolecular proton transfer that does not require the action of an additional acid-base group. The mechanism is composed of two steps in which the last one is rate-limiting. Our findings reveal that Gln202 stabilizes a catalytic water molecule in the reactive site through electrostatic contributions that are mostly relevant during the carboligation step, in agreement with experimental evidence. The catalytic water engages in intermolecular hydrogen bonds with the reacting species and makes a strong electronic contribution to the stabilization of the reaction intermediate (AL-ThDP).


Asunto(s)
Acetolactato Sintasa/química , Acetolactato Sintasa/metabolismo , Biocatálisis , Glutamina , Levaduras/enzimología , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Teoría Cuántica
13.
J Chem Inf Model ; 60(6): 3204-3213, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32286822

RESUMEN

Microtubules (MT) are cytoskeletal polymers of αß-tubulin dimers that play a critical role in many cellular functions. Diverse antimitotic drugs bind to MT and disrupt their dynamics acting as MT stabilizing or destabilizing agents. The occurrence of undesired side effects and drug resistance encourages the search for novel MT binding agents with chemically diverse structures and different interaction profiles compared to known active compounds. This work reports the rational discovery of seven novel MT stabilizers using a combination of molecular modeling methods and in vitro experimental assays. Virtual screening, similarity filtering, and molecular mechanics generalized Born surface area (MM/GBSA) binding free energy refinement were employed to select seven potential candidates with high predicted affinity toward the non-taxoid site for MT stabilizers on ß-tubulin. MD simulations of 150 ns on reduced MT models suggest that candidate compounds strengthen the longitudinal interactions between tubulin dimers across protofilaments, which is a primary molecular mechanism of action for known MT stabilizers. In vitro MT polymerization assays confirmed that all candidates promote MT assembly at concentrations of >50 mM and exhibit noncompetitive MT polymerization profiles when cotreating with Taxol. Preliminary HeLa cell viability assays revealed a moderate cytotoxic effect for the compounds under study at 100 µM concentration. These results support the validity of our rational discovery strategy and the use of molecular modeling methods to pursue the search and optimization of new MT targeting agents.


Asunto(s)
Excipientes , Paclitaxel , Células HeLa , Humanos , Microtúbulos , Paclitaxel/farmacología , Tubulina (Proteína)
14.
J Chem Inf Model ; 60(2): 786-793, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31657548

RESUMEN

The transmembrane glycoprotein mucin 1 (MUC1) is an attractive tumor marker for cancer therapy and diagnosis. The nine amino acid extracellular epitope APDTRPAPG of this protein is selectively recognized by the S2.2 single-stranded DNA anti-MUC1 aptamer, which has emerged as a promising template for designing novel targeting agents for MUC1-directed therapy. In this work, 100 ns molecular dynamics (MD) simulations, MM/GBSA binding free energy calculations, and conformational analysis were employed to propose a novel prospective anti-MUC1 aptamer with increased affinity toward the MUC1 epitope resulting from the double mutation of the T11 and T12 residues with PSU and U nucleosides, respectively. The double mutant aptamer exhibits a tight interaction with the MUC1 epitope and adopts a groove conformation that structurally favors the intermolecular contact with the epitope through the intermediate T11-A18 region leaving the 3' and 5' ends free for further chemical conjugation with a nanocarrier or pharmaceutical. These results are valuable to gain understanding about the molecular features governing aptamer-epitope interactions and constitute a first key step for the design of novel aptamer-based nanocarriers for MUC1-targeted cancer therapy.


Asunto(s)
Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Simulación por Computador , Terapia Molecular Dirigida , Mucina-1/metabolismo , Neoplasias/tratamiento farmacológico , Aptámeros de Nucleótidos/química , Secuencia de Bases , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Simulación de Dinámica Molecular , Neoplasias/metabolismo , Conformación de Ácido Nucleico , Termodinámica
15.
J Chem Inf Model ; 60(12): 6634-6641, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33259207

RESUMEN

Blocking the interaction between the Gßγ protein and the glycine receptor (GlyR) has emerged as a promising pharmacological strategy to treat acute alcohol intoxication by inhibiting ethanol potentiation on GlyR. M554 is a recently discovered small molecule capable of binding to Gßγ with potent in vitro and in vivo inhibitory activity. This compound has been tested as a mixture of diastereomers, and no information is available concerning the stereospecific activity of each species, which is critical to pursue efforts on lead optimization and drug development. In this work, we explored the differential activity of four M554 stereoisomers by in silico molecular dynamics simulations and electrophysiological experiments. Our results revealed that the (R,R)-M554 stereoisomer is a promising lead compound that inhibits ethanol potentiation of GlyR.


Asunto(s)
Etanol , Receptores de Glicina , Estereoisomerismo
16.
Proteins ; 87(8): 668-678, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30958582

RESUMEN

Microtubules (MT) are dynamic cytoskeletal components that play a crucial role in cell division. Disrupting MT dynamics by MT stabilizers is a widely employed strategy to control cell proliferation in cancer therapy. Most MT stabilizers bind to the taxol (TX) site located at the luminal interface between protofilaments, except laulimalide and peloruside A (PLA), which bind to an interfacial pocket on outer MT surface. Cryo-electron microscopy MTs reconstructions have shown differential structural effects on the MT lattice in singly- and doubly-bonded complexes with PLA, TX, and PLA/TX, as PLA is able to revert the lattice heterogeneity induced by TX association leading to more regular MT assemblies. In this work, fully-atomistic molecular dynamics simulations were employed to examine the single and double association of MT stabilizers to reduced MT models in the search for structural and energetic evidence that could be related to the differential regularization and stabilization effects exerted by PLA and TX on the MT lattice. Our results revealed that the double association of PLA/TX (a) strengthens the lateral contact between tubulin dimers compared to singly-bonded complexes, (b) favors a more parallel arrangement between tubulin dimers, and (c) induces a larger restriction in the interdimeric conformational motion increasing the probability of finding structures consistent with 13-protofilaments arrangements. These results and are valuable to increase understanding about the molecular mechanism of action of MT stabilizers, and could account for an overstabilization of MTs in doubly-bonded complexes compared to singly-bonded systems.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Lactonas/farmacología , Microtúbulos/efectos de los fármacos , Paclitaxel/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Animales , Microtúbulos/química , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Multimerización de Proteína/efectos de los fármacos , Sus scrofa , Tubulina (Proteína)/química
17.
Proteins ; 87(1): 74-80, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367507

RESUMEN

Glucansucrase GTF-SI from Streptococcus mutans is a multidomain enzyme that catalyzes the synthesis of glucan polymers. Domain V locates 100 Å from the catalytic site and is required for an optimal activity. Nevertheless, the mechanism governing its functional role remains elusive. In this work, homology modeling and molecular dynamics simulations were employed to examine the effect of domain V in the structure and glucan-binding ability of GTF-SI in full and truncated enzyme models. Our results showed that domain V increases the flexibility of the α4'-loop-α4″ motif near the catalytic site resulting in a higher surface for glucan association, and modulates the orientation of a growing oligosaccharide (N=8-23) in glucan-enzyme complexes towards engaging in favorable contacts throughout the protein, whereas in the truncated model the glucan protrudes randomly from domain B towards the solvent. These results are valuable to increase understanding about the functional role of domain V in GH70 glucansucrases.


Asunto(s)
Glucanos/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Streptococcus mutans/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Homología de Secuencia
18.
Org Biomol Chem ; 17(25): 6269-6276, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31187851

RESUMEN

In this work, molecular dynamics and QM/MM calculations were employed to examine the structural and catalytic features of the retaining glucosyltransferase GTF-SI from the GH70 family, which participates in the process of caries formation. Our goal was to obtain a deeper understanding of the role of R475 in the mechanism of sucrose breakage. This residue is highly conserved in the GH70 family and so far there has been no evidence that shows what could be the role of this residue in the catalysis performed by GTF-SI. In order to understand the structural role of R475 in the native enzyme, we built full enzyme models of the wild type and the mutants R475A and R475Q. These models were addressed by means of molecular dynamics simulations, which allowed the assessment of the dynamical effect of the R475 mutation on the active site. Then, representative structures were chosen for each one of the mutant models and QM/MM calculations were carried out to unravel the catalytic role of R475. Our results show that the R475 mutation increases the flexibility of the enzyme, which triggers the entrance of water molecules in the active site. In addition, QM/MM calculations indicate that R475 is able to provide a great stabilization to the carboxylate moiety of the acid/base E515, which is an essential characteristic favoring the proton transfer process that promotes the glycosidic bond breakage of sucrose.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Streptococcus mutans/enzimología , Arginina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Glucosiltransferasas/química , Glucosiltransferasas/genética , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Teoría Cuántica , Sacarosa/química , Sacarosa/metabolismo
19.
Org Biomol Chem ; 16(14): 2438-2447, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29557467

RESUMEN

In this work, QM/MM calculations were employed to examine the catalytic mechanism of the retaining glucosyltransferase GTF-SI enzyme, which participates in the process of caries formation. Our goal was to characterize, with atomistic details, the mechanism of sucrose hydrolysis and the catalytic factors that modulate this reaction. Our results suggest a concerted mechanism for sucrose hydrolysis in which the first event corresponds to the glycosidic bond breakage assisted by Glu515, followed by the nucleophilic attack of Asp477, leading to the formation of the Covalent Glycosyl Enzyme (CGE) intermediate. A novel conformational itinerary of the glucosyl moiety along the reaction mechanism was identified: 2H3 → 2H3-E3 → 4C1, and the calculated energy barrier is 16.4 kcal mol-1, which is in good agreement with experimental evidence showing a major contribution coming from the glycosidic bond breakage. Our calculations also revealed that Arg475 and Asp588 play a critical role as TS-stabilizers by electrostatic and charge transfer mechanisms, respectively. This is the first report dealing with the specific features of the mechanism and catalytic residues involved in GTF-SI hydrolysis of sucrose, which is a matter of relevance in enzyme catalysis and could be valuable to aid the design of novel and specific inhibitors targeting GTF-SI.


Asunto(s)
Proteínas Bacterianas/química , Glucosiltransferasas/química , Streptococcus mutans/enzimología , Catálisis , Glicosilación , Hidrólisis , Modelos Moleculares , Teoría Cuántica , Sacarosa/química , Termodinámica
20.
Nanomedicine ; 14(7): 2227-2234, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30048814

RESUMEN

Understanding the molecular features responsible for the plasma kinetics of surface-modified polyamido amine (PAMAM) dendrimers is critical to explore novel biomedical applications for these nanomaterials. In this report, polyethylene glycol (PEG) and folic acid (FA) were employed to obtain partially-substituted PAMAM dendrimers as model biocompatible nanomaterials with different size, charge and surface functionality. Cytotoxicity assays on HEK cells at 1-500 µM concentration confirmed that PEG and FA incorporation increased the cell viability of PAMAM-based nanomaterials. Measurements of plasma kinetics in vivo revealed that PEG-PAMAM has an extended circulation time in mice blood (71.7 min) over native PAMAM (53.3 min) and FA-PAMAM (41.8 min). Molecular dynamics simulations revealed a direct relationship between circulation time and dendrimer size, thus providing valuable evidence to increase understanding about the modulation of functional properties of PAMAM-based systems through surface modification, and to guide future efforts on the rational design of novel biomedical nanomaterials.


Asunto(s)
Apoptosis , Dendrímeros/farmacología , Portadores de Fármacos/química , Plasma/metabolismo , Animales , Proliferación Celular , Dendrímeros/farmacocinética , Ácido Fólico/química , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA