RESUMEN
In response to the critical challenges of interfacial impedance and volumetric changes in Li(1+x)AlxTi(2x)(PO4)3 (LATP)-based lithium metal batteries, an elastomeric lithium-conducting interlayer fabricates from fluorinated hydrogenated nitrile butadiene rubber (F-HNBR) matrix is introduced herein. Owing to the vulcanization, vapor-phase fluorination, and plasticization processes, the lithium-conducting interlayer exhibits a high elasticity of 423%, exceptional fatigue resistance (10 000 compression cycles), superior ionic conductivity of 6.3 × 10-4 S cm-1, and favorable lithiophilicity, rendering it an ideal buffer layer. By integrating the F-HNBR interlayer, the LATP-based lithium symmetric cells demonstrate an extended cycle life of up to 1600 h at 0.1 mA cm-2 and can also endure deep charge/discharge cycles (0.5 mAh cm-2) for the same duration. Furthermore, the corresponding lithium metal full cells achieve 500 cycles at 0.5 C with 98.3% capacity retention and enable a high-mass-loading cathode of 11.1 mg cm-2 to operate at room temperature.
RESUMEN
BACKGROUND: It remains unclear if adherence to the planetary healthy diet (PHD), designed to improve human and environmental health, is associated with better cognitive function in aging, and if this association differs by apolipoprotein E (APOE) genotype. OBJECTIVES: We aimed to examine the association between the PHD pattern and risk of poor cognitive function, and to further assess whether the APOE ε4 allele could modify this association. METHODS: The study included 16,736 participants from the Singapore Chinese Health Study. The PHD score was calculated using data from a validated 165-item food frequency questionnaire at baseline (1993-1998), with higher scores indicating greater adherence to the PHD. Cognitive function was assessed by the Singapore-modified Mini-Mental State Examination at follow-up 3 visits (2014-2016). A subset of 9313 participants had APOE genotype data. Logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs), with adjustment for potential confounders. RESULTS: We identified 2397 (14.3%) cases of poor cognitive function. In the total population, OR (95% CI) of poor cognitive function for each one-SD increment in the PHD score was 0.89 (0.85, 0.93). Carriers of APOE ε4 allele had increased risk of poor cognitive function (OR: 1.36, 95% CI: 1.15, 1.61). There was a significant interaction between the PHD score and the APOE ε4 allele (P-interaction = 0.042). Each one-SD increment in the PHD score was significantly associated with lower risk of poor cognitive function (OR: 0.89; 95% CI: 0.83, 0.96) in non-carriers of APOE ε4 allele, but not in APOE ε4 allele carriers (OR: 1.04, 95% CI: 0.89, 1.23). CONCLUSIONS: Midlife adherence to the PHD was associated with reduced risk of poor cognitive function in later life. However, this was not observed in carriers of APOE ε4 allele who had higher risk of poor cognitive function.
Asunto(s)
Apolipoproteína E4 , Dieta Saludable , Adulto , Humanos , Apolipoproteína E4/genética , Singapur , Pruebas Neuropsicológicas , Apolipoproteínas E/genética , Cognición , Genotipo , AlelosRESUMEN
Based on rich sulfur-involving chemical transformations, a novel spokewise synthetic strategy, a subclass of the collective strategies, has been developed to concisely synthesize four erythrina alkaloids through a single-step transformation from a common synthetic precursor. Moreover, six additional erythrina alkaloids have also been synthesized by subsequent 1-2 steps chemical transformations. The current synthetic approaches provide a valuable platform for collective total syntheses of erythrina alkaloids and pseudo-natural erythrina alkaloids.
RESUMEN
Cisplatin-based chemotherapy is the mainstay of therapeutic agents for lung cancer. Hence, we investigated the role and mechanism of circ_0006225 in tumorigenesis and cisplatin resistance in lung cancer. Levels of circ_0006225, microRNA (miR)-1236-3p and ankyrin repeat domain 22 (ANKRD22) were detected. Cell cisplatin (DDP) sensitivity and growth were determined by Cell Counting Kit-8, cell colony formation, 5-ethynyl-2'-deoxyuridine, and murine xenograft assays, respectively. A high level of circ_0006225 in lung cancer tissues and cells with cisplatin resistance was observed. Circ_0006225 deletion elevated cisplatin sensitivity and constrained proliferation in DDP-resistant lung cancer cells in vitro. Mechanistically, Circ_0006225 was confirmed to modulate ANKRD22 by sequestering miR-1236-3p. Furthermore, the suppressive effects of circ_0006225 downregulation on cisplatin resistance and proliferation in DDP-resistant lung cancer cells were reversed by miR-1236-3p inhibition or ANKRD22 overexpression. Besides that, circ_0006225 silencing also repressed cisplatin resistance and tumor growth in lung cancer in vivo. In conclusion, knockdown of circ_0006225 restrained the growth and reduced cisplatin resistance in lung cancer by the miR-1236-3p/ANKRD22 axis, suggesting a better effective therapeutic target for overcoming cisplatin resistance in lung cancer patients.
Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Neoplasias Pulmonares , MicroARNs , ARN Circular , Cisplatino/farmacología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Proliferación Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Antineoplásicos/farmacología , Femenino , Ratones Endogámicos BALB CRESUMEN
Evaluating the sustainable development level and obstacle factors of small towns is an important guarantee for implementing China's new-type urbanization and rural revitalization strategies, and is also a key path to promoting the United Nations Sustainable Development Goal 11 (SDG11). Traditional evaluation methods (such as Analytic Hierarchy Process, AHP, and Technique for Order Preference by Similarity to Ideal Solution, TOPSIS) mainly calculate the comprehensive score of each indicator through weighting. These methods have limitations in handling multidimensional data and system nonlinearity, and they cannot fully reveal the complex relationships and interactions within the sustainability systems of small towns. In contrast, the evaluation model combining Principal Component Analysis (PCA) and Catastrophe Progression Method (CPM) used in this study can better handle multidimensional data and system nonlinear relationships, reducing subjectivity in evaluation and improving the accuracy and reliability of the assessment results. The specific research process is as follows: First, based on the United Nations SDG11 framework, using multi-source big data, a theoretical framework and evaluation index system for the sustainable development of small towns suitable for the Chinese context were established. The impact of county-level factors on the sustainable development of small towns was also considered, and an entropy weight-grey correlation model was used to measure these impacts, resulting in a town-level dataset incorporating county-level influences. Secondly, the sustainability levels of 782 top small towns in China were evaluated using the comprehensive evaluation model based on PCA-CPM Model. Finally, an improved diagnostic model was used to identify obstacles influencing the sustainable development of small towns. The main findings include: 52.69% of the small towns have a sustainable development score exceeding 0.7255, indicating that the overall performance of small towns is at a medium to high development level. The development of small towns exhibits significant differences across regions and types, which are closely linked to county-level effects. Economic and social factors are the main obstacles to the sustainable development of small towns, and the impact of these obstacles intensifies from the eastern to the central, western, and northeastern regions. This study provides valuable insights for policymakers and scholars, promoting a deeper understanding of the sustainable development of small towns.
Asunto(s)
Macrodatos , Desarrollo Sostenible , Urbanización , China , Conservación de los Recursos Naturales , Análisis de Componente PrincipalRESUMEN
BACKGROUND: We aimed to provide a new typing method for osteosarcoma (OS) based on single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data from the perspective of lipid metabolism and examine its potential mechanisms in the onset and progression of OS. METHODS: Scores for six lipid metabolic pathways were calculated by single-sample gene set enrichment analysis (ssGSEA) based on a scRNA-seq dataset and three microarray expression profiles. Subsequently, cluster typing was conducted using unsupervised consistency clustering. Furthermore, single-cell clustering and dimensionality-reduction analyses identified cell subtypes. Finally, an analysis of cellular receptors was performed using CellphoneDB to identify cellular communication. RESULTS: OS was classified into three subtypes based on lipid metabolic pathways. Among them, patients in clust3 showed poor prognoses, whereas those in clust1 and clust2 exhibited good prognoses. In addition, ssGSEA analysis showed that patients in clust3 had lower immune cell scores. Moreover, the Th17 cell differentiation pathway was significantly differentially enriched between clust2 and clust3, with lower enrichment scores for metabolic pathways in the former relative to clust1 and clust2. In total, 24 genes were upregulated between clust1 and clust2, whereas 20 were downregulated in clust3. These observations were validated by single-cell data analysis. Finally, through scRNA-seq data analysis, we identified nine ligand-receptor pairs particularly critical for communication between normal and malignant cells. CONCLUSIONS: Three clusters were identified and the single-cell analysis revealed that malignant cells dominated lipid metabolism patterns in tumors, thereby influencing the tumor microenvironment.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Transcriptoma , Metabolismo de los Lípidos/genética , Osteosarcoma/genética , RNA-Seq , Lípidos , Microambiente TumoralRESUMEN
Three parallel bioreactors were operated with different inoculation of activated sludge (R1), intertidal sludge (ItS) (R2), and ItS-added AS (R3), respectively, to explore the effects of ItS bioaugmentation on the formation of salt-tolerant aerobic granular sludge (SAGS) and the enhancement of COD removal performance. The results showed that compared to the control (R1-2), R3 promoted a more rapid development of SAGS with a cultivation time of 25 d. Following 110-day cultivation, R3 exhibited a higher granular diameter of 1.3 mm and a higher hydrophobic aromatic protein content than that in control. Compared to the control, the salt-tolerant performance in R3 was also enhanced with the COD removal efficiency of 96.4% due to the higher sludge specific activity of 14.4 g·gVSS-1·d-1 and the salinity inhibition constant of 49.3 gL-1. Read- and genome-resolved metagenomics together indicated that a higher level of tryptophan/tyrosine synthase gene (trpBD, tyrBC) and enrichment of the key gene hosts Rhodobacteraceae, Marinicella in R3, which was about 5.4-fold and 1.4-fold of that in control, could be the driving factors of rapid development of SAGS. Furthermore, the augmented salt-tolerant potential in R3 could result from that R1 was dominated by Rhodospirillaceae, Bacteroidales, which carried more trehalose synthase gene (otsB, treS), while the dominant members Rhodobacteraceae, Marinicella in R3 were main contributors to the glycine betaine synthase gene (ectC, betB, gbsA). This study could provide deeper insights into the rapid development and improved salt-tolerant potential of SAGS via bioaugmentation of intertidal sludge, which could promote the application of hypersaline wastewater treatment.
Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Salinidad , AerobiosisRESUMEN
Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these 2 kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multistable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.
RESUMEN
Proteins are classified into families based on evolutionary relationships and common structure-function characteristics. Availability of large data sets of gene-derived protein sequences drives this classification. Sequence space is exponentially large, making it difficult to characterize family differences. In this work, we show that Machine Learning (ML) methods can be trained to distinguish between protein families. A number of supervised ML algorithms are explored to this end. The most accurate is a Long Short Term Memory (LSTM) classification method that accounts for the sequence context of the amino acids. Sequences for a number of protein families where there are sufficient data to be used in ML are studied. By splitting the data into training and testing sets, we find that this LSTM classifier can be trained to successfully classify the test sequences for all pairs of the families. Also investigated is whether the addition of structural information increases the accuracy of the binary comparisons. It does, but because there is much less available structural than sequence information, the quality of the training degrades. Another variety of LSTM, LSTM_wordGen, a context-dependent word generation algorithm, is used to generate new protein sequences based on seed sequences for the families considered here. Using the original sequences as training data and the generated sequences as test data, the LSTM classification method classifies the generated sequences almost as accurately as the true family members do. Thus, in principle, we have generated new members of these protein families.
Asunto(s)
Aprendizaje Automático , Proteínas/química , Proteínas/clasificación , Secuencia de Aminoácidos , Conformación ProteicaRESUMEN
Trabala vishnou gigantina Yang (Lepidoptera: Lasiocampidae) is a polyphagous forestry pest whose periodic breaking out results in great economic damage including total crop failure to forestry and fruit production in China. In this study, in order to improve the understanding of the host plant selection mechanism of T. vishnou gigantina larvae, locust, caragana, willow, poplar, apricot and sea-buckthorn were used as potential host plants for the test. Two-way choice experiment method was used to study the T. vishnou gigantina Yang feeding preferences of the six kinds of plants. Moreover, the chemical component and physical structure of six plants were analyzed with Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Among the six plants, T. vishnou gigantina larvae showed a strong preference for sea-buckthorn, followed by, apricot, willow, poplar, locust, and caragana. The FTIR analysis displayed that those six plants presented similar characteristic on absorption peak position, peak amount, and shape. The targets (1 154/1 733, 1 154/898) by FTIR showed that lipids and polysaccharide were major nutriments to affect the host plant selection of T. vishnou gigantina larvae. The XRD results showed that crystallinity index (CrI) also could affect the host plant selection of T. vishnou gigantina larvae. In this research, spectroscopy technology was firstly applied to the study of interactive relationship between insect and host, which would blaze a trail for intensive study of host plant selection mechanism of insect at molecular level.
Asunto(s)
Lepidópteros , Animales , China , Larva , Plantas , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos XRESUMEN
Catalpa sawdust was respectively pretreated by NaOH, Ca(OH)2, H2SO4 and HCl solution, and the enzymatic hydrolysis of catalpa sawdust was significantly enhanced by alkaline pretreatments. In order to investigate the mechanisms of pretreatment of catalpa sawdust, the characteristics of catalpa sawdust before and after pretreatments were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. It was found that the surface of catalpa sawdust was disrupted by four kinds of chemical pretreatment, and the pretreatment with Ca(OH)2 solution resulted in the most serious damage. The XRD results showed that part of amorphous regions was damaged by alkaline pretreatments, which led to a relative increase of crystallinity Index (CrI) of catalpa sawdust; while the CrI of catalpa sawdust was insignificantly influenced by acid pretreatments. The FTIR analysis displayed that the molecular structures of hemicellulose and lignin of catalpa sawdust were damaged in different degrees by four types of pretreatment. The significant improvement of enzymatic hydrolysis of catalpa sawdust after alkaline pretreatment might be attributed to the effective delignification of alkaline.
Asunto(s)
Celulosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Hidrólisis , Lignina , Microscopía Electrónica de Rastreo , Polisacáridos , Madera , Difracción de Rayos XRESUMEN
The males of Euophrys atrata Song & Chai,1992 and Euophrys bulbus Bao & Peng, 2002 are described and illustrated for the first time from southern China.
Asunto(s)
Arañas/clasificación , Estructuras Animales/anatomía & histología , Animales , China , Femenino , Masculino , Arañas/anatomía & histologíaRESUMEN
Owing to the considerable potential of photoelectrochemical (PEC) sensors, they have gained significant attention in the analysis of biological, environmental, and food markers. However, the limited charge mass transfer efficiency and rapid recombination of electron hole pairs have become obstacles in the development of PEC sensors. In this case, considering the unique advantages of carbon-based materials, they can be used as photosensitizers, supporting materials and conductive substrates and coupled with semiconductors to prepare composite materials, solving the above problems. In addition, there are many types of carbon materials, which can have semiconductor properties and form heterojunctions after coupling with semiconductors, effectively promoting the separation of electron hole pairs. Herein, we aimed to provide a comprehensive analysis of reports on carbon-based PEC sensors by introducing their research and application status and discussing future development trends in this field. In particular, the types and performance improvement strategies of carbon-based electrodes and the working principles of carbon-based PEC sensors are explained. Furthermore, the applications of carbon-based photoelectric sensors in environmental monitoring, biomedicine, and food detection are highlighted. Finally, the current limitations in the research on carbon-based PEC sensors are emphasized and the need to enhance the sensitivity and selectivity through material modification, structural design, improved device performance, and other strategies are emphasized.
RESUMEN
Tumor-associated macrophages (TAMs) play a crucial role in promoting tumor growth and dissemination, motivating a search for key targets to interfere with the activation of TAMs or reprogram TAMs into the tumor-suppressive type. To gain insight into the mechanisms of macrophage polarization, a designed co-culture system is established, allowing for the education of macrophages in a manner that closely mimics the intricacies of TAMs in the tumor immune microenvironment (TIME). Through database mining, exosomal miR-1246 is identified and is then validated. Exosomal miR-1246-driven polarization of TAMs disrupts the infiltration and function of CD8+ T cells. Mechanically, the amassment of exosomal miR-1246 stems from TUT7-mediated degradation of small noncoding RNA, a process stabilized by SNRPB, but not the precursor of miR-1246. Moreover, an Exo-motif is present in the exosomal miR-1246 sequence, enabling it to bind with the exosomal sorting protein hnRNPA2B1. RNA-seq analysis reveals that exogenous miR-1246 modulates the polarization of TAMs at a post-transcriptional level, emphasizing the pivotal role of the NLRP3 in macrophage polarization. In conclusion, the findings underscore the importance of exosomal miR-1246 as a trigger of macrophage reprogramming and uncover a novel mechanism for its enhanced presence in the TIME.
Asunto(s)
MicroARNs , Macrófagos Asociados a Tumores , Menogaril/metabolismo , Linfocitos T CD8-positivos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos/metabolismoRESUMEN
Excessive fructose diet is closely associated with colorectal cancer (CRC) progression. Nevertheless, fructose's specific function and precise mechanism in colorectal cancer liver metastasis (CRLM) is rarely known. Here, this study reported that the fructose absorbed by primary colorectal cancer could accelerate CRLM, and the expression of KHK-A, not KHK-C, in liver metastasis was higher than in paired primary tumors. Furthermore, KHK-A facilitated fructose-dependent CRLM in vitro and in vivo by phosphorylating PKM2 at Ser37. PKM2 phosphorylated by KHK-A inhibited its tetramer formation and pyruvic acid kinase activity but promoted the nuclear accumulation of PKM2. EMT and aerobic glycolysis activated by nuclear PKM2 enhance CRC cells' migration ability and anoikis resistance during CRLM progression. TEPP-46 treatment, targeting the phosphorylation of PKM2, inhibited the pro-metastatic effect of KHK-A. Besides, c-myc activated by nuclear PKM2 promotes alternative splicing of KHK-A, forming a positive feedback loop.
RESUMEN
Colorectal cancer (CRC) stands as the second most common cause of cancer-related mortality globally and p53, a widely recognized tumor suppressor, contributes to the development of CRC. Ubiquitin-specific protease 36 (USP36), belonging to the deubiquitinating enzyme family, is involved in tumor progression across multiple cancers. However, the underlying molecular mechanism in which USP36 regulates p53 signaling pathway in CRC is unclear. Here, our study revealed that USP36 was increased in CRC tissues and associated with unfavorable prognosis. Functionally, elevated USP36 could promote proliferation, migration, and invasion of CRC cells in vitro and in vivo. Mechanistically, USP36 could interact with and stabilize RBM28 via deubiquitination at K162 residue. Further, upregulated RBM28 could bind with p53 to suppress its transcriptional activity and therefore inactivate p53 signaling pathway. Collectively, our investigation identified the novel USP36/RBM28/p53 axis and its involvement in promoting cell proliferation and metastasis in CRC, which presents a promising therapeutic strategy for CRC treatment.
RESUMEN
Released aerosol particles during restaurant culinary activity affect diners' health. The air conditioning system is crucial for regulating indoor air quality. However, its improper air distribution increases the individuals' exposure to particle pollution. This study investigates restaurants employing side-up airflow during summer with numerous heat sources and examines the culinary particle diffusion in the diners' respiratory zone under the combined influence of air conditioning cold jet air supply and culinary heat source heat plume. It elucidates the change rule of the concentration distribution of culinary particles under the combined action of these two heterogeneous airflows. This study investigated the movement and concentration distribution of indoor particle by numerical simulation under various air supply velocities, culinary heat source strengths and positions and tuyere opening modes. In restaurants with culinary sources, the thermal buoyancy by the heat plume causes particles to rise. However, the drag force exerted by the cold air supply jet impedes the particles' upward motion. The particle concentration distribution is significantly influenced by both the air supply velocity and the relative positioning of the heat source and the tuyere. Particle concentration increases by 27.13 % in the respiratory zone when the air supply jet trajectory is above the pollution emission source than below. Therefore, lowered air supply velocity is ideal with increased horizontal distance between the emission source and the tuyere under the condition of comfort satisfaction. This scenario mitigates the downward movement exerted by the jet on the particles. The drag force is increased with the air supply velocity increasing from 2.5 m/s to 4.0 m/s. Particle concentration is raised to 41.38 % in the respiratory zone. The drag force by the cold jet on the particles is also heightened with the bilateral tuyere than its single-side counterpart which increases particle concentration maximum by 40.30 % in the respiratory zone.
RESUMEN
Accurate determination of nanoplastics (NPs) in aquatic ecosystems constitutes a challenge for which highly sensitive analytical methods are necessitated. Herein, a sample pretreatment based on self-made amino-functionalized activated carbon fibers (ACFs-NH2) dispersive solid-phase extraction (DSPE) allows for high-recovery, followed by high-sensitivity detection of NPs by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The developed methodology allowed low detection limits (20-100 µg/L) to be achieved quickly in a few steps. Under optimal conditions, ACFs-NH2 (12.5 mg) was able to recover ≥98.45 % of polystyrene (PS) nanoplastics at high concentration (100 mg/L) in 10 mL seawater. Based on the high adsorption performance of materials, the adsorption dynamics and isotherms were determined to infer the interaction mechanism of PSNPs on ACFs-NH2. After adsorption, the target on the surface of the adsorbent can be directly pyrolyzed, which can simplify the operation steps and avoid the elution of organic solvents, making the process more environmentally friendly. This strategy is feasible for the analysis of trace NPs in water systems.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Agua de Mar , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Adsorción , Agua de Mar/química , Poliestirenos/química , Carbón Orgánico/químicaRESUMEN
Three new species of the genus Spinirta Jin & Zhang, 2020 are described from China: S. shenwushanensis sp. nov., S. lanceola sp. nov. and S. caudata sp. nov.. Additionally, the male of S. leigongshanensis Jin & Zhang, 2020 is described for the first time. Finally, we provide an updated distribution map of the genus.