Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673926

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy that is characterized by an expansion of immature myeloid precursors. Despite therapeutic advances, the prognosis of AML patients remains poor and there is a need for the evaluation of promising therapeutic candidates to treat the disease. The objective of this study was to evaluate the efficacy of duocarmycin Stable A (DSA) in AML cells in vitro. We hypothesized that DSA would induce DNA damage in the form of DNA double-strand breaks (DSBs) and exert cytotoxic effects on AML cells within the picomolar range. Human AML cell lines Molm-14 and HL-60 were used to perform 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), DNA DSBs, cell cycle, 5-ethynyl-2-deoxyuridine (EdU), colony formation unit (CFU), Annexin V, RNA sequencing and other assays described in this study. Our results showed that DSA induced DNA DSBs, induced cell cycle arrest at the G2M phase, reduced proliferation and increased apoptosis in AML cells. Additionally, RNA sequencing results showed that DSA regulates genes that are associated with cellular processes such as DNA repair, G2M checkpoint and apoptosis. These results suggest that DSA is efficacious in AML cells and is therefore a promising potential therapeutic candidate that can be further evaluated for the treatment of AML.


Asunto(s)
Apoptosis , Proliferación Celular , Duocarmicinas , Leucemia Mieloide Aguda , Humanos , Apoptosis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Proliferación Celular/efectos de los fármacos , Duocarmicinas/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células HL-60 , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos
2.
Res Sq ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853928

RESUMEN

3D cellular-specific epigenetic and transcriptomic reprogramming is critical to organogenesis and tumorigenesis. Here we dissect the distinct cell fitness in 2D (normoxia vs. chronic hypoxia) vs 3D (normoxia) culture conditions. We identify over 600 shared essential genes and additional context-specific fitness genes and pathways. Knockout of the VHL-HIF1 pathway results in incompatible fitness defects under normoxia vs. 1% oxygen or 3D culture conditions. Moreover, deletion of each of the mitochondrial respiratory electron transport chain complex has distinct fitness outcomes. Notably, multicellular organogenesis signaling pathways including TGFß-SMAD specifically constrict the uncontrolled cell proliferation in 3D while inactivation of epigenetic modifiers (Bcor, Kmt2d, Mettl3 and Mettl14) has opposite outcomes in 2D vs. 3D. We further identify a 3D-dependent synthetic lethality with partial loss of Prmt5 due to a reduction of Mtap expression resulting from 3D-specific epigenetic reprogramming. Our study highlights unique epigenetic, metabolic and organogenesis signaling dependencies under different cellular settings.

3.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559042

RESUMEN

The MYC proto-oncogenes (c-MYC, MYCN , MYCL ) are among the most deregulated oncogenic drivers in human malignancies including high-risk neuroblastoma, 50% of which are MYCN -amplified. Genetically engineered mouse models (GEMMs) based on the MYCN transgene have greatly expanded the understanding of neuroblastoma biology and are powerful tools for testing new therapies. However, a lack of c-MYC-driven GEMMs has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and therapy development given that c-MYC is also an important driver of many high-risk neuroblastomas. In this study, we report two transgenic murine neuroendocrine models driven by conditional c-MYC induction in tyrosine hydroxylase (Th) and dopamine ß-hydroxylase (Dbh)-expressing cells. c-MYC induction in Th-expressing cells leads to a preponderance of Pdx1 + somatostatinomas, a type of pancreatic neuroendocrine tumor (PNET), resembling human somatostatinoma with highly expressed gene signatures of δ cells and potassium channels. In contrast, c-MYC induction in Dbh-expressing cells leads to onset of neuroblastomas, showing a better transforming capacity than MYCN in a comparable C57BL/6 genetic background. The c-MYC murine neuroblastoma tumors recapitulate the pathologic and genetic features of human neuroblastoma, express GD2, and respond to anti-GD2 immunotherapy. This model also responds to DFMO, an FDA-approved inhibitor targeting ODC1, which is a known MYC transcriptional target. Thus, establishing c-MYC-overexpressing GEMMs resulted in different but related tumor types depending on the targeted cell and provide useful tools for testing immunotherapies and targeted therapies for these diseases.

4.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488852

RESUMEN

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.


Asunto(s)
Neuroblastoma , Precursores del ARN , Sulfonamidas , Humanos , Animales , Ratones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Glutaminasa/genética , Reprogramación Metabólica , Histona Demetilasas con Dominio de Jumonji/metabolismo
5.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508144

RESUMEN

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Asunto(s)
Histona Demetilasas , Neuroblastoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Proteínas Oncogénicas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética
6.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585889

RESUMEN

The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic (ADRN) and mesenchymal (MES), which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown and how to eradicate neuroblastoma regardless of their cell states is a clinical challenge. To better understand the lineage switch of neuroblastoma in chemoresistance, we comprehensively defined the transcriptomic and epigenetic map of ADRN and MES types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We showed that cancer cells not only undergo a bidirectional switch between ADRN and MES states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. The lineage alterations are coupled with epigenetic reprogramming and dependency switch of lineage-specific transcription factors, epigenetic modifiers and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states.

7.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38260392

RESUMEN

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA