RESUMEN
As the initial stage of the sewage treatment system, the degradation of pollutants inevitably involves an entropy change process. Microorganisms play a vital role, where they interact with pollutants and constantly adjust own ecosystem. However, there is a lack of research on the entropy change and external dissipation processes within the sewer system. In this study, considering the characteristics of microbial population changes in the biofilm within the urban sewage pipe network, entropy theory is applied to characterize the attributes of different microorganisms. Through revealing the entropy change of the microbial population and chemical composition, a coupling relationship between the functional bacteria diversity, organic substances composition, and external dissipation in the pipeline network is proposed. The results show that the changes of nutrient availability, microbial community structure, and environmental conditions all affect the changes of information entropy in the sewer network. This study is critical for assessing the understanding of ecological dynamics and energy flows within these systems and can help researchers and operation managers develop strategies to optimize wastewater treatment processes, mitigate environmental impacts, and promote sustainable management practices.
Asunto(s)
Ecosistema , Contaminantes Ambientales , Entropía , Aguas del Alcantarillado , Monitoreo del AmbienteRESUMEN
Commonly used peroxydisulfate (PS) or peroxymonosulfate (PMS) activation methods have been limited in their practical application due to certain drawbacks, such as high cost, high energy consumption and secondary pollution. In this study, a catalyst-free alizarin green (AG) self-activating PMS catalytic system was constructed based on photosensitization properties of dye, which ultimately achieved efficient degradation of the dye activator, also the target pollutant. Here, 52.5% of the 100 mL mixture of 10 mg/L AG decomposed within 60 min with 1 mM PMS under visible-light irradiation, thereby showing a strong pH adaptation. Mechanism of AG self-activating PMS was revealed that the photo-excited AG can effectively transfer photo-induced electrons to PMS for its activation, which generates reactive oxidizing species dominated by singlet oxygen (1O2), and supplemented by hydroxyl radical (â¢OH), superoxide radical (O2â¢-) and sulfate radical (SO4â¢-) to realize the efficient self-degradation of the dye pollutants. Moreover, such self-catalytic system operated well under natural sunlight irradiation, indicating the great application potential in the actual wastewater treatment. Herein, photosensitive dye acted as an ideal PMS activator realizing its efficient self-degradation, which provides a novel idea of "using waste to treat waste" for developing wastewater treatment process in a high-efficiency and low-consumption way.
RESUMEN
The characteristics of effluent organic matter (EfOM) from a wastewater treatment plant (WWTP) during ozonation were investigated using excitation and emission matrix (EEM) spectra, Fourier transform infrared spectroscopy (FT-IR) and high-performance size exclusion chromatography (HPSEC) at different ozone dosages. The selectivity of ozonation towards different constituents and functional groups was analysed using two-dimensional correlation spectra (2D-COS) probed by FT-IR, synchronous fluorescence spectra and HPSEC. The results indicated that ozonation can destroy aromatic structures of EfOM and change its molecular weight distribution (MWD). According to 2D-COS analysis, microbial humic-like substances were preferentially removed, and then the protein-like fractions. Terrestrial humic-like components exhibited inactivity towards ozonation compared with the above two fractions. Protein-like substances with small molecular weight were preferentially reacted during ozonation based on 2D-COS probed by HPSEC. In addition, the selectivity of ozone towards different functional groups of EfOM exhibited the following sequence: phenolic and alcoholic CO groupsâ¯>â¯aromatic structures containing CC double bondsâ¯>â¯aliphatic CH. X-ray photoelectron spectroscopy (XPS) further elucidated the preferential reaction of aromatic structures in EfOM during ozonation.
Asunto(s)
Compuestos Orgánicos/química , Ozono/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Peso Molecular , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
This study proposed a novel membrane filtration and dissolved ozone flotation integrated (MDOF) process and tested it at pilot scale. Membrane filtration in the MDOF process was operated in gravity-driven mode, and required no backwashing, flushing, or chemical cleaning. Because ozone was added in the MDOF process, ozonation, coagulation, and membrane filtration could occur in a single reactor. Moreover, in situ ozonation occurred in the MDOF process, which differs from the conventional pre-ozonation membrane filtration process. Significant enhancement of turbidity removal was further achieved through the addition of membrane filtration. Membrane fouling was mitigated in the MDOF process compared to the MDAF process. In situ ozonation in the MDOF process decreased the fluorescence intensity and transformed the high MW dissolved organics into small MW compounds. For the fouling layer, the extracellular polymeric substance (EPS) contents and cake layer morphology were analyzed. The results indicated that the contents of EPS decreased. Furthermore, a thinner and more loosely structured cake layer formed in the MDOF process. Because coagulation and ozonation occurred simultaneously in a single reactor, the generation of hydroxyl radicals was enhanced through the catalytic effect of Al-based coagulants on ozone decomposition, which further alleviated membrane fouling in the MDOF process.
Asunto(s)
Membranas Artificiales , Purificación del Agua/métodos , Matriz Extracelular de Sustancias Poliméricas , Filtración/métodos , Ozono , Aguas Residuales , Contaminantes Químicos del AguaRESUMEN
Distribution characteristics and biodiversity of microbial communities were studied in a 1200 m pilot sewer system. Results showed that the dominant microorganisms, fermentation bacteria (FB), hydrogen-producing acetogen (HPA), sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) changed significantly along the sewer systems, from start to the end. The distribution of the functional microorganisms could induce substrate transformation and lead to the accumulation of micromolecular organics (i.e., acetic acid, propionic acid and amino acid). However, substrate transformation induced by these microbes was affected by environmental factors such as oxidation-reduction potential, pH and dissolved oxygen. Changes in environmental conditions along the sewer resulted in the variation of dominant bioreactions. FB were enriched at the beginning of the sewer, while SRB and MA were found toward the end. Furthermore, based on Spearman rank correlation analysis of microbial communities, environmental factors and substrates, covariation between microbial community distribution and organics metabolization along the sewer was identified. This study could provide a theoretical foundation for understanding wastewater quality variation during transportation from sewers to treatment plants, therefore, promoting optimization of design and operation of wastewater treatment.
Asunto(s)
Euryarchaeota , Microbiota , Archaea , Bacterias , Aguas del AlcantarilladoRESUMEN
In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral pH. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at pH5. At pH5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation. Meanwhile, at pH7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH)3. Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH>COO->NH deformation of amide II>aliphatic hydroxyl COH at pH5, and COO->aliphatic hydroxyl COH at pH7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants.
Asunto(s)
Aluminio/química , Sustancias Húmicas , Modelos Químicos , Amidas , Dióxido de Carbono , Ácidos Carboxílicos , Fluorescencia , Concentración de Iones de Hidrógeno , Radical Hidroxilo , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g-1 and a liberation capacity of 6.79 ± 0.77 mg g-1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.
Asunto(s)
Fósforo/aislamiento & purificación , Aguas del Alcantarillado/química , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Calcio/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Modelos Teóricos , Fosfatos/aislamiento & purificación , Soluciones , Factores de TiempoRESUMEN
To explore the potential of Pseudomonas aeruginosa NY3 for the treatment of highly concentrated crude oil-contaminated water, the immobilization of strain NY3 on the surface of polyurethane foam (PUF), the conditions for using these biofilms and the possibility of recovering the used biofilms were studied. The results demonstrated that the biofilm formation process for strain NY3 was quick and easy. Under optimum conditions, the biomass immobilized on the PUF surface could reach 488.32 mg dry cell/g dry PUF. The results demonstrated that when the degradation time was 12 h, the average oil removal rate in 2 g crude oil/L contaminated water was approximately 90% for 40d. Meanwhile, the biofilms could be recovered for reuse. The recovery ability and the high and steady oil removal rate facilitated the application of the biofilms for the removal of concentrated oil from wastewater.
Asunto(s)
Biopelículas , Hidrocarburos/aislamiento & purificación , Petróleo , Pseudomonas aeruginosa/metabolismo , Aguas Residuales/química , Biodegradación Ambiental , Células Inmovilizadas , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Poliuretanos/química , Aguas Residuales/microbiologíaRESUMEN
Dissolved-ozone flotation (DOF) is a tertiary wastewater treatment process, which combines ozonation and flotation. In this paper, a pilot-scale DOF system fed by secondary effluent from a wastewater treatment plant (WWTP) in China was used to study the effect of ozone dosage on the DOF process performance. The results show that an ozone dosage could affect the DOF performance to a large extent in terms of color and organic matter removal as well as disinfection performance. The optimal color and organic matter removal was achieved at an ozone dosage of 0.8 mg/l. For disinfection, significant improvement in performance could be achieved only when the organic matter removal was optimal. The optimal ozone dosage of at least 1.6 mg/l was put forward, in this case, in order to achieve the optimal color, turbidity, organic matter and disinfection performance.
Asunto(s)
Desinfección/métodos , Ozono/química , Purificación del Agua/métodos , China , Color , Compuestos Orgánicos/aislamiento & purificación , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificaciónRESUMEN
Organic matter concentration is a critical factor influencing the adaptability of anaerobic ammonium oxidation (anammox) bacteria to low-strength sewage treatment. To address this challenge and achieve stable anammox activity, a micro-aeration partial nitrification-anammox process was developed for continuous-flow municipal sewage treatment. Under limited ammonium conditions, the effective utilization of organics in denitrification promoted the stable accumulation of nitrite and enhanced anammox activity. This, in turn, led to enhanced nitrogen removal efficiency, reaching approximately 87.7%. During the start-up phase, the protein content of extracellular polymeric substances (EPS) increased. This enhanced EPS intensified the inhibitory effect of denitrifying bacteria (DNB) on nitrite-oxidizing bacteria through competition for nitrite, thereby facilitating the proliferation of anammox bacteria (AnAOB). Additionally, several types of DNB capable of utilizing slowly biodegradable organics contributed to the adaptability of AnAOB. These findings provide valuable insights for ensuring efficient anammox performance and robust nitrogen removal in the treatment of low-strength sewage.
Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Desnitrificación , Nitritos/metabolismo , Anaerobiosis , Reactores Biológicos/microbiología , Oxidación-Reducción , Nitrificación , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , Bacterias/metabolismoRESUMEN
Using coconut shell and boric acid as raw materialsï¼ a new boron-doped coconut shell mesoporous carbon material ï¼B-CSCï¼ was prepared using a simple one-step pyrolysis method for efficient adsorption and removal of tetracycline pollutants in water. The effects of pyrolysis temperature and boron-carbon mass ratio on the adsorption performance under key preparation conditions were systematically studiedï¼ and their microstructure and physicochemical properties were characterized using a specific surface area and pore size analyzer ï¼BETï¼ï¼ field emission scanning electron microscopy ï¼SEMï¼ï¼ X-ray photon spectroscopy ï¼XPSï¼ï¼ Raman spectrometer ï¼Ramanï¼ï¼ and Zeta potentiometer ï¼Zetaï¼. The effects of initial pHï¼ different metal cationsï¼ and different background water quality conditions on the adsorption effect were systematically investigated. Combined with material characterization and correlation analysisï¼ the enhanced adsorption mechanism was discussed and analyzed in depth. The results showed that one-step pyrolysis could incorporate boron into the surface and crystal lattice of coconut shell charcoalï¼ resulting in a larger specific surface area and pore volumeï¼ and the main forms of boron introduced were H3BO3ï¼ B2O3ï¼ Bï¼ and B4C. The adsorption capacity of B-CSC to tetracycline reached 297.65 mg·g-1ï¼ which was 8.9 times that of the original coconut shell mesoporous carbon ï¼CSCï¼. At the same timeï¼ the adsorption capacity of B-CSC for rhodamine B ï¼RhBï¼ï¼ bisphenol Aï¼BPAï¼ï¼ and methylene blue ï¼MBï¼ï¼ common pollutants in aquatic environmentsï¼ was as high as 372.65ï¼ 255.24ï¼ and 147.82 mg·g-1ï¼ respectively. The adsorption process of B-CSC to tetracycline was dominated by physicochemical interactionï¼ mainly involving liquid film diffusionï¼ surface adsorptionï¼ mesoporous and microporous diffusionï¼ and active site adsorptionï¼ and H3BO3 was the main adsorption site. The adsorption strengthening mechanism mainly reduced the chemical inertness of the carbon network and enhanced its π-π interaction and hydrogen bonding with tetracycline molecules.
RESUMEN
Sewer pipe materials exhibit diverse inner-surface features, which can affect the attachment of biofilm and influence microbial metabolic processes. To investigate the role of the type of pipe material on the composition and metabolic capabilities of the adhering microorganisms, three sets of urban sewers (High-Density Polyethylene Pipe (HDPE), Ductile Iron Pipe (DIP), and Concrete Pipe (CP)) were constructed. Measurements of biofilm thickness and environmental factors revealed that the thickest biofilm in CP pipes reached 2000 µm, with ORP values as low as -325 mV, indicating a more suitable anaerobic microbial habitat. High-throughput sequencing showed similar relative abundances of genera related to carbon and sulfur metabolism in the DIP and CP pipes, whereas HDPE exhibited only half the relative abundance compared to that found in the other pipes. To explore the impact of pipe materials on the mechanisms of microbial response, a metagenomic approach was used to investigate the biological transformation of carbon and sulfur in wastewater. The annotations of the crucial enzyme-encoding genes related to methyl coenzyme M and sulfite reductase in DIP and CP were 50 and 110, respectively, whereas HDPE exhibited lower counts (25 and 70, respectively). This resulted in significantly lower carbon and sulfur metabolism capabilities in the HDPE biofilm than in the other two pipes. The stability of wastewater quality during the transmission process in HDPE pipes reduces the metabolic generation of toxic and harmful gases within the pipes, favoring the preservation of carbon sources for sewer systems. This study reveals the variations in carbon and sulfur metabolism in wastewater pipe systems influenced by pipe materials and provides insights for designing future sewers.
Asunto(s)
Biopelículas , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas ResidualesRESUMEN
The scouring and migration of sediments in sewer systems are the key contributors to overflow pollution. Both physical and biological factors affect the erosion and migration of layered sediments. However, the functional characteristics of these factors and their quantification process still need to be further explored. In this study, the physical form and biological metabolism of the sediment are coupled, and the suspension mechanism under the dual action is proposed systematically and deeply. The influence coefficient of scour initiation was redefined as A^/prime, where the physical factors were particle size and mass, and the biological factors were bio-viscosity and internal cavitation. The bio-viscosity of layered sediment particles is provided by Extracellular Polymeric Substances (EPS). The slope value of |ΔD/-Δf| (ΔD: Dissipation; Δf: frequency) of surface EPS decreased from 0.489 to 0.315 when Quartz Crystal Microbalance with Dissipation (QCM-D) was used to analyse EPS viscosity, indicating that biological activities formed a dense biofilm on the sediment surface and enhanced the bond between particles. Meanwhile, by monitoring the accumulation density of sediments at different depths, it was found that the packing density of the bottom layer decreased from 1.50 to 1.45 g/cm3, which was mainly due to the internal cavitation caused by microorganism consuming organic matrix and releasing H2S and CH4. The delamination difference of EPS results in the uneven change of adhesion between different layers. This, combined with the internal erosion characteristics triggered by microbial stratified metabolism, collectively constitutes the biological effects on the sediment structure. Finally, the coupling mechanism of particle distribution and bio-viscous-cavitation erosion was formed, and the correctness of the formula was verified by repeated experiments, which proved the agreement between the theory and the practice and provided a scientific method for systematically analysing the erosion and migration law of sediment in the sewer system.
RESUMEN
The existence of dissolved organic matter (DOM) with low coagulability poses great challenges for conventional coagulation (CC) in water treatment. As a kind of typical organochlorine pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D) cannot be efficiently removed by CC. To enhance the 2,4-D removal, ozonation was applied with coagulation. The hybrid ozonation-coagulation (HOC) achieved 60.61% DOC removal efficiency, which was obviously higher than pre-ozonation coagulation (POC) (45.83%). Synchronous fluorescence spectroscopy revealed stronger complexation between modified 2,4-D and coagulants during the HOC than that in subsequent coagulation of the POC process. During the HOC process, ozone promoted the formation of polymeric Al species, such as Alb. To investigate the 2,4-D removal mechanism, γ-Al2O3/O3 process with the same oxidation ability as the HOC was established. 2,4-D was oxidized step-by-step to 2,4-dichlorophenol, 4,6-dichlororesorcin, 3,5-dichlorocatechol, 2-chlorohydroquinone, 4-chlorocatechol, 1,2,4,5-tetrahydroxybenzene, pentahydroxybenzene and oxalic acid in γ-Al2O3/O3 process. However, during the HOC process, these oxidized intermediates were readily complexed by coagulants and accumulated in flocs. Especially 1,2,4,5-tetrahydroxybenzene and pentahydroxybenzene, completely complexed by AlCl3â¢6H2O hydrolysates as soon as being formed. Immediate entrapment and complexation between coagulant hydrolysates and 2,4-D oxidized intermediates inhibited the generation of small-molecular-weight organics such as oxalic acid, which enhanced the removal of organics with low coagulability.
RESUMEN
Fungi are the significant components of the sewer ecology system which can consume substances and exhibit pathogenicity. However, the characteristics of fungi formation and metabolism in the complex sewer environment have not been revealed in depth. In this study, gradient flow conditions were conducted in a pilot sewer and the formation characteristics of fungi were synthetically investigated. The results showed that the low flow rate at 0.1-0.4 m/s led to the loose morphology of biofilms, while the overly loose environment did not allow fungi communities to thrive in sewer. The dense biofilms were found at the middle flow condition (0.4-0.6 m/s), and the fungal communities with degradation functions were exuberant at this condition (such as Tremellales with relative abundance of 6.18% and Talaromyces with relative abundance of 6.51%). In particular, eleven kinds of fungi with known pathogenicity of the sewer biofilm were found in this study, and it is worth noting that the abundance of pathogenic fungi at medium flow rates is significantly higher than that at other flow conditions (higher than 10 %). While, excessive flow shear force (0.8-1.2 m/s) led to biofilm shedding which caused hindering the proper generation of fungi. In summary, the pollutant transformation and pathogenic exposure conducted by fungi communities could affect the sewer management process significantly, and this study could provide research foundation for wastewater quality prediction and management of pathogenic risk in sewer systems.
Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Virulencia , Biopelículas , HongosRESUMEN
Enhancing the stability of biomass and ensuring a stable activity of anaerobic ammonia oxidizing bacteria are crucial for successful operation of the simultaneous partial nitrification, Anammox, and denitrification (SNAD) process. In this study, gel beads of polyvinyl alcohol/phytic acid (PVA/PA) and polyvinyl alcohol/phytic acid/Fe (PVA/PA/Fe) were prepared as innovative bio-carriers. Theoretical simulations and analyses revealed that these carriers are predominantly connected via hydrogen and borate bonds, with PVA/PA/Fe also featuring metal coordination bonds. The total nitrogen removal efficiency of reactors with PVA/PA/Fe and PVA/PA increased by 13.5 % and 9.0 %, respectively, compared to reactor without carriers. The iron-enriched PVA/PA/Fe carriers significantly improve SNAD by promoting Anammox, Feammox, and nitrate-dependent Fe2+ oxidation reactions, leading to faster nitrogen conversion and higher nitrogen removal rate than reactor without carriers and with PVA/PA. Using of PVA/PA and PVA/PA/Fe gel beads as bio-carriers offers benefits to the SNAD process, including cost-effective and low carbon requirement.
Asunto(s)
Desnitrificación , Geles , Hierro , Nitrificación , Nitrógeno , Alcohol Polivinílico , Alcohol Polivinílico/química , Hierro/química , Hierro/metabolismo , Geles/química , Oxidación-Reducción , Reactores Biológicos , Reactivos de Enlaces Cruzados/química , MicroesferasRESUMEN
Bioaugmentation (BA) is an effective approach to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soils, and biochar is frequently used to enhance PAH degradation performance. In this study, phenanthrene (PHE) degradation behavior and active degraders in a petroleum-contaminated soil were investigated and compared between free-cell mediated and biochar-immobilization assisted bioaugmentation. Biochar-immobilization assisted bioaugmentation (BA-IPB) introduced PHE degraders immobilized on biochar and effectively promoted PHE degradation, achieving higher PHE removal efficiencies within 24 h (~58 %) than free-cell mediated bioaugmentation (BA-FPB, ~39 %). Soil microbial community structure significantly changed in both BA-FPB and BA-IPB treatments. Through RNA-stable isotope probing (SIP), 14 and 11 bacterial lineages responsible for in situ PHE degradation were identified in BA-FPB and BA-IPB treatments, respectively. ASV_17 in BA-FPB treatment was Rhodococcus in the exogenous bacterial mixture; in contrast, none of exogenous bacteria were involved in PHE degradation in BA-IPB treatment. Methylobacterium (ASV_186), Xanthomonas (ASV_41), Kroppenstedtia (ASV_205), Scopulibacillus (ASV_243), Bautia (ASV_356), and Lactobacillus (ASV_376) were identified as PHE degraders for the first time. Our findings expanded the knowledge of the active PHE degraders and underlying mechanisms in bioaugmentation process, and suggested biochar-immobilization assisted bioaugmentation as a promising strategy for the bioremediation of PAH contaminated soils.
Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo/química , Fenantrenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Isótopos , Biodegradación Ambiental , Bacterias/metabolismo , ARN/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/análisisRESUMEN
In-sewer physio-biochemical processes cause significant variations of wastewater quality during conveyance, which affects the influent to a wastewater treatment plant (WWTP) and arguably the microbial community of biological treatment units in a WWTP. In wet weather, contaminants stored in sewer deposits can be resuspended and migrate downstream or be released during combined sewer overflows to the urban water bodies, posing challenges to the treatment facilities or endangering urban water quality. Therefore, in-sewer transformation and migration of contaminants have been extensively studied. The compiled results from representative research in the past few decades showed that biochemical reactions are both cross-sectionally and longitudinally organized in the deposits and the sewage, following the redox potential as well as the sequence of macromolecule/contaminant degradation. The sewage organic contents and sewer biofilm microorganisms were found to covary but more systematic studies are required to examine the temporal stability of the feature. Besides, unique communities can be developed in the sewage phase. The enrichment of the major sewage-associated microorganisms can be explained by the availability of biodegradable organic contents in sewers. The sewer deposits, including biofilms, harbor both microorganisms and contaminants and usually can provide longer residence time for in-sewer transformation than wastewater. However, the interrelationships among contaminant transformation, microorganisms in the deposits/biofilms, and those in the sewage are largely unclear. Specifically, the formation and migration of FOG (fat, oil, and grease) deposits, generation and transport of contaminants in the sewer atmosphere (e.g., H2S, CH4, volatile organic compounds, bioaerosols), transport and transformation of nonconventional contaminants, such as pharmaceuticals and personal care products, and wastewater quality variation during the biofilm rehabilitation period after damages caused by rains/storms are some topics for future research. Moreover, systematic and standardized field analysis of real sewers under dynamic wastewater discharge conditions is necessary. We believe that an improved understanding of these processes would assist in sewer management and better prepare us for the challenges brought about by climate change and water shortage.
Asunto(s)
Microbiota , Aguas Residuales , Aguas del Alcantarillado , Biopelículas , Calidad del AguaRESUMEN
Bio-metabolism of diverse communities is the main reason of water quality variation in sewers, and the signal molecule generation of communities is dementated to be the key regulation procedure for community metabolism. To reveal the mechanism of pollutant biotransformation in complex sewer environment, this study explored the formation of bacteria and fungi and the signal molecule transduction characteristics in a pilot sewer. In this study, several kinds of signal molecules that produced by bacteria and fungi (C4-HSL, C6-HSL, C8-HSL, farnesol and tyrosol) were detected along the formation process of sewer biofilms. The results showed that, in the early stage, bacterial AHLs signaling molecules are beneficial to the synthesis of EPS, providing a good material basis for the growth of bacterial flora. In addition, tyrosol stimulates the formation of embryonic tubes in yeast cells, further promoting the growth of hyphae. At the later stage, AHLs signaling molecules and tyrosol jointly promoted the growth of biofilms. In conclusion, it is precisely because of the coexistence of bacteria and fungi in the sewer system that the generated signal molecules can jointly promote the synthesis and growth of biofilms through different pathways, and have positive feedback on the biodegradation of various pollutants. Based on the exploration, the ecological patterns of bacterial-fungal communities in urban sewer system were proposed and it could improve the understanding on the pollutant transformation behaviors in sewers.
RESUMEN
To overcome the shortcomings of homogeneous Fe ion activating peroxymonosulfate (PMS), such as high pH-dependence, limited cycling of Fe(III)/Fe(II) and sludge production, graphite carbon nitride (g-C3N4) is chosen as a support for Fe ions, and reduced graphene oxide (rGO) is employed to facilitate the electron transfer process, thereby enhancing catalysis. Herein, a ternary catalyst, Fe-g-C3N4/rGO, is first applied under lightless condition for PMS activation, which exhibits ideal performance for contaminant mineralization. 82.5 % of the total organic carbon (TOC) in 100 mL of 5 mg/L bis-phenol A (BPA) was removed within 20 min by the optimal catalyst named 30%rFe0.2CN, which shows a strong pH adaptability over the range of 3-11 compared with a common Fenton-like system. Moreover, the highly stable Fe-g-C3N4/rGO/PMS catalytic system resists complex water matrices, especially those with high turbidity. To unveil the mechanism of PMS activation and pollutant degradation, the physicochemical properties of the as-prepared catalysts are comprehensively characterized by multiple techniques. The Fe(III) contained in both the Fe-N group and α-Fe2O3 component of 30%rFe0.2CN not only directly reacts with PMS to produce sulfate radicals (SO4-) and hydroxyl radicals (OH), but also combines with PMS to form the essential [Fe(III)OOSO3]+ active complex, thereby generating superoxide radicals (O2-) and singlet oxygen (1O2). Among the various reactive oxidizing species, 1O2 plays an important role in pollutant removal, which is additionally generated by the CO moiety of the catalyst activating PMS as well as PMS self-oxidation, indicating the dominance of the non-radical pathway in the pollutant degradation process. Due to the advantages of high efficiency, wide pH adaptability and stability, the proposed lightless Fe-g-C3N4/rGO/PMS catalytic system represents a promising avenue for practical wastewater purification.