Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Cell ; 83(2): 298-313.e8, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36603579

RESUMEN

Post-translational modifications (PTMs) of proteins are crucial to guarantee the proper biological functions in immune responses. Although protein phosphorylation has been extensively studied, our current knowledge of protein pyrophosphorylation, which occurs based on phosphorylation, is very limited. Protein pyrophosphorylation is originally considered to be a non-enzymatic process, and its function in immune signaling is unknown. Here, we identify a metabolic enzyme, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), as a pyrophosphorylase for protein serine pyrophosphorylation, by catalyzing the pyrophosphorylation of interferon regulatory factor 3 (IRF3) at serine (Ser) 386 to promote robust type I interferon (IFN) responses. Uap1 deficiency significantly impairs the activation of both DNA- and RNA-viruse-induced type I IFN pathways, and the Uap1-deficient mice are highly susceptible to lethal viral infection. Our findings demonstrate the function of protein pyrophosphorylation in the regulation of antiviral responses and provide insights into the crosstalk between metabolism and innate immunity.


Asunto(s)
Factor 3 Regulador del Interferón , Interferón Tipo I , Animales , Ratones , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Fosforilación , Transducción de Señal , Galactosiltransferasas/metabolismo
2.
Mol Cell ; 83(2): 281-297.e10, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36586411

RESUMEN

As a key component of the inflammasome, NLRP3 is a critical intracellular danger sensor emerging as an important clinical target in inflammatory diseases. However, little is known about the mechanisms that determine the kinetics of NLRP3 inflammasome stability and activity to ensure effective and controllable inflammatory responses. Here, we show that S-palmitoylation acts as a brake to turn NLRP3 inflammasome off. zDHHC12 is identified as the S-acyltransferase for NLRP3 palmitoylation, which promotes its degradation through the chaperone-mediated autophagy pathway. Zdhhc12 deficiency in mice enhances inflammatory symptoms and lethality following alum-induced peritonitis and LPS-induced endotoxic shock. Notably, several disease-associated mutations in NLRP3 are associated with defective palmitoylation, resulting in overt NLRP3 inflammasome activation. Thus, our findings identify zDHHC12 as a repressor of NLRP3 inflammasome activation and uncover a previously unknown regulatory mechanism by which the inflammasome pathway is tightly controlled by the dynamic palmitoylation of NLRP3.


Asunto(s)
Autofagia Mediada por Chaperones , Inflamasomas , Animales , Ratones , Aciltransferasas , Autofagia , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Lipoilación , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Mol Cell ; 68(2): 308-322.e4, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28965816

RESUMEN

Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD/metabolismo , Autofagia/fisiología , Interferón Tipo I/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal/fisiología , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos CD/genética , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células HeLa , Humanos , Interferón Tipo I/genética , Ratones , Proteínas Nucleares/genética , Células RAW 264.7 , Receptores Inmunológicos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
4.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30065070

RESUMEN

Viral infection triggers host innate immune responses, which primarily include the activation of type I interferon (IFN) signaling and inflammasomes. Here, we report that Zika virus (ZIKV) infection triggers NLRP3 inflammasome activation, which is further enhanced by viral non-structural protein NS1 to benefit its replication. NS1 recruits the host deubiquitinase USP8 to cleave K11-linked poly-ubiquitin chains from caspase-1 at Lys134, thus inhibiting the proteasomal degradation of caspase-1. The enhanced stabilization of caspase-1 by NS1 promotes the cleavage of cGAS, which recognizes mitochondrial DNA release and initiates type I IFN signaling during ZIKV infection. NLRP3 deficiency increases type I IFN production and strengthens host resistance to ZIKVin vitro and in vivo Taken together, our work unravels a novel antagonistic mechanism employed by ZIKV to suppress host immune response by manipulating the interplay between inflammasome and type I IFN signaling, which might guide the rational design of therapeutics in the future.


Asunto(s)
Caspasa 1/inmunología , Evasión Inmune , Nucleotidiltransferasas/inmunología , Proteolisis , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/inmunología , Virus Zika/inmunología , Animales , Caspasa 1/genética , Chlorocebus aethiops , Endopeptidasas/genética , Endopeptidasas/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/inmunología , Células HEK293 , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Ratones , Ratones Noqueados , Nucleotidiltransferasas/genética , Transducción de Señal/genética , Células THP-1 , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/inmunología , Células Vero , Proteínas no Estructurales Virales/genética , Virus Zika/genética
5.
EMBO J ; 35(8): 866-80, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26988033

RESUMEN

Autophagy, mediated by a number of autophagy-related (ATG) proteins, plays an important role in the bulk degradation of cellular constituents. Beclin-1 (also known as Atg6 in yeast) is a core protein essential for autophagic initiation and other biological processes. The activity of Beclin-1 is tightly regulated by multiple post-translational modifications, including ubiquitination, yet the molecular mechanism underpinning its reversible deubiquitination remains poorly defined. Here, we identified ubiquitin-specific protease 19 (USP19) as a positive regulator of autophagy, but a negative regulator of type I interferon (IFN) signaling.USP19 stabilizes Beclin-1 by removing the K11-linked ubiquitin chains of Beclin-1 at lysine 437. Moreover, we foundthat USP19 negatively regulates type IIFNsignaling pathway, by blockingRIG-I-MAVSinteraction in a Beclin-1-dependent manner. Depletion of eitherUSP19 or Beclin-1 inhibits autophagic flux and promotes type IIFNsignaling as well as cellular antiviral immunity. Our findings reveal novel dual functions of theUSP19-Beclin-1 axis by balancing autophagy and the production of type IIFNs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Beclina-1 , Línea Celular/virología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Endopeptidasas/genética , Endopeptidasas/inmunología , Células HeLa/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Virus de la Influenza A/patogenicidad , Interferón Tipo I/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Estabilidad Proteica , Receptores Inmunológicos , Transducción de Señal/fisiología , Ubiquitinación
6.
EMBO Rep ; 18(12): 2160-2171, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29097393

RESUMEN

MAVS signalosome plays an important role in RIG-I-like receptor (RLR)-induced antiviral signaling. Upon the recognition of viral RNAs, RLRs activate MAVS, which further recruits TRAF6 and other signaling proteins to initiate type I interferon (IFN) activation. MAVS signalosome also regulates virus-induced apoptosis to limit viral replication. However, the mechanisms that control the activity of MAVS signalosome are still poorly defined. Here, we report NLRP11, a Nod-like receptor, is induced by type I IFN and translocates to mitochondria to interact with MAVS upon viral infection. Using MAVS as a platform, NLRP11 degrades TRAF6 to attenuate the production of type I IFNs as well as virus-induced apoptosis. Our findings reveal the regulatory role of NLRP11 in antiviral immunity by disrupting MAVS signalosome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/metabolismo , Proteínas NLR/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Proteínas NLR/metabolismo , Virus Sendai/fisiología , Transducción de Señal , Células THP-1 , Factor 6 Asociado a Receptor de TNF/metabolismo , Replicación Viral
7.
Adv Exp Med Biol ; 1209: 125-144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728868

RESUMEN

The production of type I interferons (IFNs) is one of the hallmarks of intracellular antimicrobial program. Typical type I IFN response activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, which results in the transcription of plentiful IFN-stimulated genes (ISGs) to establish the comprehensive antiviral states. Type I IFN signaling should initiate timely to provoke innate and adaptive immune responses for effective elimination of the invading pathogens. Meanwhile, a precise control must come on the stage to restrain the persistent activation of type I IFN responses to avoid attendant toxicity. Autophagy, a conserved eukaryotic degradation system, mediated by a number of autophagy-related (ATG) proteins, plays an essential role in the clearance of invading microorganism and manipulation of type I responses. Autophagy modulates type I IFN responses through regulatory integration with innate immune signaling pathways, and by removing endogenous ligands of innate immune sensors. Moreover, selective autophagy governs the choice of innate immune factors as specific cargoes for degradation, thus tightly monitoring the type I IFN responses. This review will focus on the cross-regulation between autophagy and type I IFN signaling in host defense.


Asunto(s)
Autofagia , Interacciones Huésped-Patógeno , Interferón Tipo I , Transducción de Señal , Animales , Autofagia/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , Factores de Transcripción STAT/inmunología , Transducción de Señal/inmunología
8.
Adv Exp Med Biol ; 1206: 635-665, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31777005

RESUMEN

The immune system plays a critical role in defense against invading pathogens, and its function must be strictly controlled to maintain intracellular homeostasis. Once suffering microbial invasion or receiving danger signals, the immune system initiates the responses timely. After the threat removal, the immune system should be shut down to avoid the harm caused by excessive immune activation. Additionally, the immune system needs to be internally adjusted so that it does not respond to self-antigens to avoid autoimmune diseases. The states of nonresponse in immunity are termed as immune tolerance. Numerous studies indicated that macroautophagy (hereafter named as autophagy) is involved in T cells and B cells related immune tolerance. Recently, more and more researches demonstrated that autophagy is not only capable of nonselective degradation of cellular macromolecular components but also responsible for sorting and transporting autophagic substrates through a group of cargo receptors for selective degradation, which is called as selective autophagy. Recent studies indicated that selective autophagy can effectively regulate the immune tolerance and avoid over-activation of immune response by targeting multiple receptors and effectors of immune cells. In this chapter, we will focus on how autophagy participates explicitly in the adaptive and innate immune tolerance.


Asunto(s)
Autofagia , Tolerancia Inmunológica , Autofagia/inmunología , Linfocitos B/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Linfocitos T/inmunología
9.
Nat Microbiol ; 8(5): 958-972, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081201

RESUMEN

Microglia and astrocytes are subgroups of brain glia cells that support and protect neurons within the central nervous system (CNS). At early stages of viral infection in the CNS, they are predominant responding cells and lead to recruitment of peripheral immune cells for viral clearance. Inhibitor of nuclear factor κB kinase subunit epsilon (IKKi) is critical for type I interferon signalling and inflammation, which modulate heterogenic immune responses during CNS infection. Balanced autophagy is vital to maintain brain integrity, yet regulation of autophagy and immune activity within brain glia cells is poorly understood. Here we identify SHISA9 as an autophagy cargo receptor that mediates the autophagy-dependent degradation of IKKi during herpes simplex virus type 1 infection. IKKi is recognized by SHISA9 through unanchored K48-linked poly-ubiquitin chains and bridged to autophagosome membrane components GABARAPL1. Single-cell RNA sequencing analysis shows that SHISA9 has temporal characteristics while modulating both antiviral and inflammatory responses in microglia and astrocytes at different stages during viral infection. We found that Shisa9-/- mice are highly susceptible to herpes simplex virus encephalitis, have pathogenic astrocytes and display more severe neuroinflammation compared with wild-type mice. Taken together, our study unravels a critical role of selective autophagy by orchestrating immune heterogeneity of different CNS resident cells through the SHISA9-IKKi axis.


Asunto(s)
Enfermedades Neuroinflamatorias , Virosis , Animales , Ratones , Autofagia , Encéfalo/metabolismo , Sistema Nervioso Central , Enfermedades Neuroinflamatorias/metabolismo , Virosis/metabolismo
10.
Front Immunol ; 14: 1162211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251408

RESUMEN

Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.


Asunto(s)
Antivirales , Núcleo Celular , Inmunidad
11.
Autophagy ; 19(11): 2853-2868, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434364

RESUMEN

ABBREVIATIONS: Baf A1: bafilomycin A1; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; IFN: interferon; IKBKE/IKKi: inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF3: interferon regulatory factor 3; ISG: interferon-stimulated gene; ISRE: IFN-stimulated response element; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecule patterns; RIGI/DDX58: RNA sensor RIG-I; SeV: Sendai virus; siRNA: small interfering RNA; TBK1: TANK binding kinase 1; WT: wild-type; VSV: vesicular stomatitis virus.


Asunto(s)
Antivirales , Transducción de Señal , Autofagia , Inmunidad Innata , Interferones , Humanos , Animales , Ratones
12.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100798

RESUMEN

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , COVID-19/genética , ADN , ADN Helicasas/genética , Interferón Tipo I/genética , Proteínas de la Nucleocápside/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , SARS-CoV-2/genética
13.
Autophagy ; 18(9): 2254-2255, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35311449

RESUMEN

The intracellular pattern recognition receptor NOD2 senses bacterial peptidoglycan to drive proinflammatory and antimicrobial responses. Dysregulation of NOD2 signaling confers susceptibility to several immunological and inflammatory diseases. Although palmitoylation of NOD2 is required for its membrane recruitment and activation, whether palmitoylation can modulate the stability of NOD2 to orchestrate inflammation remains unclear. Recently, we have revealed that S-palmitoylation restricts SQSTM1-mediated selective macroautophagic/autophagic degradation of NOD2, and identified a gain-of-function R444C variant of NOD2 short isoform (NOD2sR444C) in autoinflammatory disease, which induces excessive inflammation through its enhanced S-palmitoylation level and decreased autophagic degradation.


Asunto(s)
Lipoilación , Proteína Adaptadora de Señalización NOD2 , Autofagia , Proteínas Portadoras/metabolismo , Humanos , Inflamación , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Sequestosoma-1/metabolismo
14.
Autophagy ; 18(8): 2001-2002, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35311471

RESUMEN

Macroautophagy/autophagy is a conserved eukaryotic process to mediate the degradation of cell organelles and protein aggregates, which participates in a variety of cellular responses, including immune signal transduction. KDM4D functions as an important histone demethylase to regulate gene transcription by inhibiting histone H3K9 trimethylation. Whether autophagy epigenetically regulates the immune response via modulating the stability and activity of KDM4D remains largely unclear. Recently, we identified TRIM14 (tripartite motif-containing 14) as an epigenetic regulator, which recruits USP14 and BRCC3 to form a regulatory complex, and promotes an inflammation response through inhibiting OPTN-mediated autophagic degradation of KDM4D.


Asunto(s)
Autofagia , Histona Demetilasas con Dominio de Jumonji , Autofagia/genética , Enzimas Desubicuitinizantes/metabolismo , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina Tiolesterasa/metabolismo
15.
iScience ; 25(8): 104748, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35958028

RESUMEN

[This corrects the article DOI: 10.1016/j.isci.2020.100881.].

16.
Front Microbiol ; 13: 889835, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572624

RESUMEN

Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.

17.
Front Microbiol ; 13: 889693, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865923

RESUMEN

In the past decade, dengue virus infection is one of the most prevalent and rapidly spreading arthropod-borne diseases worldwide with about 400 million infections every year. Although it has been reported that the dengue virus could take advantage of autophagy to promote its propagation, the association between selective autophagy and the dengue virus remains largely unclear. Here, we demonstrated that dengue virus capsid protein, the key viral protein for virus assembly, maturation, and replication, underwent autophagic degradation after autophagy activation. Autophagy cargo receptor p62 delivered ubiquitinated capsid protein to autophagosomes for degradation, which could be enhanced by Torin 1 treatments. Further study revealed that the association between p62 and viral capsid protein was dependent on the ubiquitin-binding domain of p62, and the poly-ubiquitin conjugated at lysine 76 of capsid protein served as a recognition signal for autophagy. Consistently, p62 deficiency in Huh7 cells led to the enhancement of dengue virus replication. Our study revealed that p62 targeted dengue virus capsid protein for autophagic degradation in a ubiquitin-dependent manner, which might uncover the potential roles of p62 in restricting dengue virus replication.

18.
Cell Death Differ ; 29(1): 40-53, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34257412

RESUMEN

As a core kinase of antiviral immunity, the activity and stability of TANK-binding kinase 1 (TBK1) is tightly controlled by multiple post-translational modifications. Although it has been demonstrated that TBK1 stability can be regulated by ubiquitin-dependent proteasome pathway, it is unclear whether another important protein degradation pathway, autophagosome pathway, can specifically affect TBK1 degradation by cargo receptors. Here we report that E3 ubiquitin ligase NEDD4 functions as a negative regulator of type I interferon (IFN) signaling by targeting TBK1 for degradation at the late stage of viral infection, to prevent the host from excessive immune response. Mechanically NEDD4 catalyzes the K27-linked poly-ubiquitination of TBK1 at K344, which serves as a recognition signal for cargo receptor NDP52-mediated selective autophagic degradation. Taken together, our study reveals the regulatory role of NEDD4 in balancing TBK1-centered type I IFN activation and provides insights into the crosstalk between selective autophagy and antiviral signaling.


Asunto(s)
Interferón Tipo I , Proteínas Serina-Treonina Quinasas/metabolismo , Interferón Tipo I/metabolismo , Macroautofagia , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
Cell Death Differ ; 29(8): 1541-1551, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35066577

RESUMEN

The nucleotide-binding oligomerization domain protein 2 (NOD2) senses bacterial peptidoglycan to induce proinflammatory and antimicrobial responses. Dysregulation of NOD2 signaling is involved in multiple inflammatory disorders. Recently, S-palmitoylation, a novel type of post-translational modification, is reported to play a crucial role in membrane association and ligand-induced signaling of NOD2, yet its influence on the stability of NOD2 is unclear. Here we show that inhibition of S-palmitoylation facilitates the SQSTM1/p62-mediated autophagic degradation of NOD2, while S-palmitoylation of NOD2 by ZDHHC5 promotes the stability of NOD2. Furthermore, we identify a gain-of-function R444C variant of NOD2 short isoform (NOD2s-R444C) in autoinflammatory disease, which induces excessive inflammation through its high S-palmitoylation level. Mechanistically, the NOD2s-R444C variant possesses a stronger binding ability to ZDHHC5, which promotes its S-palmitoylation, and restricts its autophagic degradation by reducing its interaction with SQSTM1/p62. Taken together, our study reveals the regulatory role of S-palmitoylation in controlling NOD2 stability through the crosstalk with autophagy, and provides insights into the association between dysfunctional S-palmitoylation and the occurrence of inflammatory diseases.


Asunto(s)
Autofagia , Lipoilación , Proteína Adaptadora de Señalización NOD2 , Proteína Sequestosoma-1 , Humanos , Inflamación , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal
20.
Autophagy ; 18(10): 2288-2302, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35100065

RESUMEN

Deubiquitination plays an important role in the regulation of the crosstalk between macroautophagy/autophagy and innate immune signaling, yet its regulatory mechanisms are not fully understood. Here we identify the deubiquitinase OTUD7B as a negative regulator of antiviral immunity by targeting IRF3 (interferon regulatory factor 3) for selective autophagic degradation. Mechanistically, OTUD7B interacts with IRF3, and activates IRF3-associated cargo receptor SQSTM1/p62 (sequestosome 1) by removing its K63-linked poly-ubiquitin chains at lysine 7 (K7) to enhance SQSTM1 oligomerization. Moreover, viral infection increased the expression of OTUD7B, which forms a negative feedback loop by promoting IRF3 degradation to balance type I interferon (IFN) signaling. Taken together, our study reveals a specific role of OTUD7B in mediating the activation of cargo receptors in a substrate-dependent manner, which could be a potential target against excessive immune responses.Abbreviations: Baf A1: bafilomycin A1; CGAS: cyclic GMP-AMP synthase; DDX58/RIG-I: DExD/H-box helicase 58; DSS: dextran sodium sulfate; DUBs: deubiquitinating enzymes; GFP: green fluorescent protein; IFN: interferon; IKKi: IKBKB/IkappaB kinase inhibitor; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecular patterns; SeV: Sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; Ub: ubiquitin; WT: wild-type; VSV: vesicular stomatitis virus.


Asunto(s)
Factor 3 Regulador del Interferón , Interferón Tipo I , Antivirales , Autofagia , Enzimas Desubicuitinizantes/metabolismo , Dextranos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Quinasa I-kappa B , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Lisina , Nucleotidiltransferasas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , ARN Interferente Pequeño , Proteína Sequestosoma-1/metabolismo , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA