Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
mSystems ; 6(5): e0136820, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34546068

RESUMEN

Rice paddy soil-associated microbiota participate in biogeochemical processes that underpin rice yield and soil sustainability, yet continental-scale biogeographic patterns of paddy soil microbiota remain elusive. The soil bacteria of four typical Chinese rice-growing regions were characterized and compared to those of nonpaddy soils. The paddy soil bacteria were significantly less diverse, with unique taxonomic and functional composition, and harbored distinct cooccurrence network topology. Both stochastic and deterministic processes shaped soil bacteria assembly, but paddy samples exhibited a stronger deterministic signature than nonpaddy samples. Compared to other environmental factors, climatic factors such as mean monthly precipitation and mean annual temperature described most of the variance in soil bacterial community structure. Cooccurrence network analysis suggests that the continental biogeographic variance in bacterial community structure was described by the competition between two mutually exclusive bacterial modules in the community. Keystone taxa identified in network models (Anaerolineales, Ignavibacteriae, and Deltaproteobacteria) were more sensitive to changes in environmental factors, leading us to conclude that environmental factors may influence paddy soil bacterial communities via these keystone taxa. Characterizing the uniqueness of bacterial community patterns in paddy soil (compared to nonpaddy soils) at continental scales is central to improving crop productivity and resilience and to sustaining agricultural soils. IMPORTANCE Rice fields provide food for over half of the world's human population. The ecology of paddy soil microbiomes is shaped by human activities, which can have a profound impact on rice yield, greenhouse gas emissions, and soil health. Investigations of the soil bacteria in four typical Chinese rice-growing regions showed that (i) soil bacterial communities maintain highly modularized species-to-species network structures; (ii) community patterns were shaped by the balance of integrated stochastic and deterministic processes, in which homogenizing selection and dispersal limitation dominate; and (iii) deterministic processes and climatic and edaphic factors influence community patterns mainly by their impact on highly connected nodes (i.e., keystone taxa) in networks. Characterizing the unique ecology of bacterial community patterns in paddy soil at a continental scale may lead to improved crop productivity and resilience, as well as sustaining agricultural soils.

2.
Microb Biotechnol ; 12(3): 528-543, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884189

RESUMEN

Vermicomposting using black soldier fly (BSF) larvae (Hermetia illucens) has gradually become a promising biotechnology for waste management, but knowledge about the larvae gut microbiome is sparse. In this study, 16S rRNA sequencing, SourceTracker, and network analysis were leveraged to decipher the influence of larvae gut microbiome on food waste (FW) biodegradation. The microbial community structure of BSF vermicompost (BC) changed greatly after larvae inoculation, with a peak colonization traceable to gut bacteria of 66.0%. The relative abundance of 11 out of 21 metabolic function groups in BC were significantly higher than that in natural composting (NC), such as carbohydrate-active enzymes. In addition, 36.5% of the functional genes in BC were significantly higher than those in NC. The changes of metabolic functions and functional genes were significantly correlated with the microbial succession. Moreover, the bacteria that proliferated in vermicompost, including Corynebacterium, Vagococcus, and Providencia, had strong metabolic abilities. Systematic and complex interactions between the BSF gut and BC bacteria occurred over time through invasion, altered the microbial community structure, and thus evolved into a new intermediate niche favourable for FW biodegradation. The study highlights BSF gut microbiome as an engine for FW bioconversion, which is conducive to bioproducts regeneration from wastes.


Asunto(s)
Compostaje/métodos , Dípteros/metabolismo , Dípteros/microbiología , Alimentos , Microbioma Gastrointestinal , Animales , Biotransformación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Larva/metabolismo , Larva/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Administración de Residuos/métodos
3.
J Zhejiang Univ Sci ; 5(4): 390-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14994426

RESUMEN

Insertion mutagenesis has become one of the most popular methods for gene functions analysis. Here we report a two-element Ac/Ds transposon system containing enhancer trap and gene trap for gene tagging in rice. The excision of Ds element was examined by PCR amplification. The excision frequency of Ds element varied from 0% to 40% among 20 F(2) populations derived from 11 different Ds parents. Southern blot analysis revealed that more than 70% of excised Ds elements reinserted into rice genome and above 70% of the reinserted Ds elements were located at different positions of the chromosome in rice. The result of histochemical GUS analysis indicated that 28% of enhancer trap and 22% of gene trap tagging plants displayed GUS activity in leaves, roots, flowers or seeds. The GUS positive lines will be useful for identifying gene function in rice.


Asunto(s)
Oryza/genética , Secuencia de Bases , Cruzamientos Genéticos , Elementos Transponibles de ADN/genética , ADN de Plantas/genética , Elementos de Facilitación Genéticos , Genoma de Planta , Glucuronidasa/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa
4.
Artículo en Inglés | WPRIM | ID: wpr-267159

RESUMEN

<p><b>OBJECTIVE</b>To investigate the effects of curcumin on pain threshold and the expressions of nuclear factor κ B (NF-κ B) and CX3C chemokine receptor 1 (CX3CR1) in spinal cord and dorsal root ganglion (DRG) of the rats with sciatic nerve chronic constrictive injury.</p><p><b>METHODS</b>One hundred and twenty male Sprague Dawley rats, weighing 220-250 g, were randomly divided into 4 groups. Sham surgery (sham) group: the sciatic nerves of rats were only made apart but not ligated; chronic constrictive injury (CCI) group: the sciatic nerves of rats were only ligated without any drug treatment; curcumin treated injury (Cur) model group: the rats were administrated with curcumin 100 mg/(kg·d) by intraperitoneal injection for 14 days after CCI; solvent control (SC) group: the rats were administrated with the solvent at the same dose for 14 days after CCI. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of rats were respectively measured on pre-operative day 2 and postoperative day 1, 3, 5, 7, 10 and 14. The lumbar segment L4-5 of the spinal cord and the L4, L5 DRG was removed at post-operative day 3, 7 and 14. The change of nuclear factor κ B (NF-κ B) p65 expression was detected by Western blotting while the expression of CX3CR1 was determined by immunohistochemical staining.</p><p><b>RESULTS</b>Compared with the sham group, the TWL and MWT of rats in the CCI group were significantly decreased on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI, and the expressions of NF-κ B p65 and CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In the Cur group, the TWL of rats were significantly increased than those in the CCI group on post-operative day 7, 10 and 14 (P<0.05) and MWT increased than those in the CCI group on post-operative day 10 and 14 (P<0.05). In addition, the administration of curcumin significantly decreased the positive expressions of NF-κ B p65 and CX3CR1 in spinal cord and DRG (P<0.05).</p><p><b>CONCLUSION</b>Our study suggests that curcumin could ameliorate the CCI-induced neuropathic pain, probably through inhibiting CX3CR1 expression by the activation of NF-κ B p65 in spinal cord and DRG.</p>


Asunto(s)
Animales , Ratas , Western Blotting , Receptor 1 de Quimiocinas CX3C , Curcumina , Farmacología , Ganglios Espinales , Metabolismo , Vértebras Lumbares , FN-kappa B , Metabolismo , Umbral del Dolor , Ratas Sprague-Dawley , Receptores de Citocinas , Metabolismo , Receptores del VIH , Metabolismo , Nervio Ciático , Heridas y Lesiones , Metabolismo , Médula Espinal , Metabolismo
5.
Artículo en Zh | WPRIM | ID: wpr-301549

RESUMEN

<p><b>OBJECTIVE</b>To investigate the diversify of the nuclear pathway of c-Jun NH2-terminal kinases (JNK) during transient brain ischemia/reperfusion injury in hippocampal neuron apoptosis in spontaneously hypertensive rats (SHR) and to test whether the neuroprotection of curcumine on transient brain ischemia/reperfusion injury in SHR is related to the nuclear pathway of JNK.</p><p><b>METHODS</b>Male Wistar-Kyoto (WKY) rats and SHR were randomly divided into five groups (n = 6): WKY sham group (W-Sham), WKY ischemia/reperfusion group (W-I/ R), SHR sham group (S-Sham), SHR ischemia/reperfusion group (S-I/R) and SHR curcumine (a chinese traditional medicine)100 mg/kg treatment group (S-Cur), which were sacrificed at 2 h, 6 h, 24 h, 3 d and 7 d after reperfusion. Global brain ischemic model was established by 4-VO method. The TdT-mediated dUTP nick end labeling (TUNEL) method was used to detect the neuron apoptosis in hippocampal CA1 region. The immunohistochemical method was applied to investigate the expressions of c-jun and c-fos in hippocampal CA1 region.</p><p><b>RESULTS</b>The expressions of apoptosis and c-jun and c-fos in CA1 region in S-Sham group, W-I/R group and S-I/R group were more than those in W-Sham group (P < 0.05), were significantly increased in S-I/R group than those in W-I/R group (P < 0.05), and were significantly decreased in S-Cur group than those in S-I/R group (P < 0.05).</p><p><b>CONCLUSION</b>Neuronal apoptosis and the expressions of c-jun and c-fos are more in SHR hippocampal. Global brain ischemia/reperfusion injury induces more expressions of apoptosis in hippocampal neuron in SHR, and the more expressions of c-jun and c-fos may participate in that process. The neuroprotection of curcumine in SHR is related to c-jun and c-fos.</p>


Asunto(s)
Animales , Masculino , Ratas , Apoptosis , Isquemia Encefálica , Metabolismo , Patología , Región CA1 Hipocampal , Metabolismo , Curcumina , Farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Metabolismo , Neuronas , Metabolismo , Proteínas Proto-Oncogénicas c-fos , Metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Daño por Reperfusión , Metabolismo , Patología
6.
Sheng Wu Gong Cheng Xue Bao ; 19(6): 668-73, 2003 Nov.
Artículo en Zh | MEDLINE | ID: mdl-15971577

RESUMEN

It is critical to generate marker gene free transgenic plants for retransformating or eliminating the potential harmfulness of marker gene and its product. In this study, Ac/Ds transposon system was developed for removal of hpt selection marker gene to obtain marker-free transgenic plants in rice ( Oryza sativa L.). Ds element containing the interesting gene bar was constructed next to the selection marker gene hpt to get Ds-T-DNA. Rice plants were transformed by Agrobacterium tumefaciens EHA105 containing Ac-T-DNA and Ds-T-DNA respectively. Rice plant containing single copy Ac-T-DNA was crossed with plant containing single copy Ds-T-DNA to obtain the F1 plant containing both Ac and Ds elements. F1 plant was self-crossed to produce F2 progeny in which T-DNA insert and transposed Ds element segregated independently. Two plants contained Ds element but no hpt marker gene in total 100 F2 plants. The result indicated that Ac/Ds transposon system could be used as a vector system for generating marker gene free transgenic plants in rice.


Asunto(s)
Elementos Transponibles de ADN/genética , Vectores Genéticos/genética , Oryza/genética , Plantas Modificadas Genéticamente/genética , Agrobacterium tumefaciens/genética , Southern Blotting , Cruzamientos Genéticos , Reacción en Cadena de la Polimerasa , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA