Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 927
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(18): 3758-3775, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37657418

RESUMEN

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Asunto(s)
Envejecimiento , Longevidad , Humanos , Biomarcadores
2.
Nat Immunol ; 18(5): 519-529, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28346409

RESUMEN

Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/patología , Endorribonucleasas/metabolismo , Macrófagos/fisiología , Obesidad/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diferenciación Celular/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Metabolismo Energético/genética , Humanos , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
3.
Trends Biochem Sci ; 48(7): 618-628, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37069045

RESUMEN

During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inteligencia Artificial , Núcleo Celular/metabolismo , ADN/genética , Senescencia Celular/genética
4.
Trends Genet ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39424502

RESUMEN

Research into aging constitutes a pivotal endeavor aimed at elucidating the underlying biological mechanisms governing aging and age-associated diseases, as well as promoting healthy longevity. Recent advances in transcriptomic technologies, such as bulk RNA sequencing (RNA-seq), single-cell transcriptomics, and spatial transcriptomics, have revolutionized our ability to study aging at unprecedented resolution and scale. These technologies present novel opportunities for the discovery of biomarkers, elucidation of molecular pathways, and development of targeted therapeutic strategies for age-related disorders. This review surveys recent breakthroughs in different types of transcripts on aging, such as mRNA, long noncoding (lnc)RNA, tRNA, and miRNA, highlighting key findings and discussing their potential implications for future studies in this field.

5.
EMBO J ; 41(8): e109633, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35253240

RESUMEN

Ageing is a complex process with common and distinct features across tissues. Unveiling the underlying processes driving ageing in individual tissues is indispensable to decipher the mechanisms of organismal longevity. Caenorhabditis elegans is a well-established model organism that has spearheaded ageing research with the discovery of numerous genetic pathways controlling its lifespan. However, it remains challenging to dissect the ageing of worm tissues due to the limited description of tissue pathology and access to tissue-specific molecular changes during ageing. In this study, we isolated cells from five major tissues in young and old worms and profiled the age-induced transcriptomic changes within these tissues. We observed a striking diversity of ageing across tissues and identified different sets of longevity regulators therein. In addition, we found novel tissue-specific factors, including irx-1 and myrf-2, which control the integrity of the intestinal barrier and sarcomere structure during ageing respectively. This study demonstrates the complexity of ageing across worm tissues and highlights the power of tissue-specific transcriptomic profiling during ageing, which can serve as a resource to the field.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/genética , Transcriptoma
6.
Nature ; 586(7827): E7, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32934359

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nature ; 577(7791): E6, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896818

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nature ; 572(7770): 528-532, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391582

RESUMEN

During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state1. Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation2-5. The regionalization of cell fates preceding the formation of the basic body plan-the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study-is conserved in vertebrate embryos6-8. However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo-Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Vía de Señalización Hippo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Regulón/genética , Transducción de Señal , Transcriptoma/genética , Proteínas Señalizadoras YAP
9.
Small ; : e2406251, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285817

RESUMEN

Rational construction of high-performance ionic conductors is a critical challenge in the field of energy storage. In this study, a series of 1D anionic titanium-based covalent organic frameworks (COFs) containing abundant alkali metal ion migration sites, namely, COF-M-R (M = Li, Na, K; R = H, Me, Et), is constructed. The integration of negative TiO6 2- sites on 1D anionic COFs allows alkali metal cations to migrate directly through the channels. Meanwhile, the π-π stacking of 1D chain-to-chain allows the distribution of ion-migration sites in 2D planes. In view of this, multidimensional ionic transport in COFs is realized to achieve high ionic conductivity. COF-M-Rs exhibit an increased ionic conductivity as the counterions change from Li+ to Na+ to K+. Notably, COF-Na-Et has an impressive ionic conductivity as high as 0.81 × 10-3 S cm-1. The different decorated groups (H, Me, and Et) on the skeleton influence the dissociation of the cation from the polyanion. This study offers deep insights into the design of COF-based solid-state electrolytes to achieve high ionic conductivity by increasing the ionic transport dimensions.

10.
J Virol ; 97(4): e0180922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022194

RESUMEN

Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.


Asunto(s)
Genética Inversa , Tospovirus , Replicación Viral , Animales , Genética Inversa/métodos , ARN Polimerasa Dependiente del ARN , Tospovirus/genética , Estados Unidos , Replicación Viral/genética , ARN Viral/genética , Proteínas de la Nucleocápside/genética
11.
Thromb J ; 22(1): 69, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075498

RESUMEN

OBJECTIVE: Thromboangiitis obliterans (TAO) remains clinical challenging due to its rarity and underwhelming management outcomes. This study aimed to describe a novel TAO rabbit model that demonstrates a closer resemblance to TAO. METHODS: Thirty-six New Zealand rabbits underwent the surgical implantation of calibrated gelatin sponge particles (CGSPs) into their right femoral artery. The CGSPs were soaked in different solutions to simulate different types of thrombi: normal (NT; normal saline); inflammatory TAO thrombus (TAO; dimethylsulfoxide [DMSO]), and DMSO with methotrexate (MTX). All groups underwent clinical assessment, digital subtraction angiography (DSA) and histopathological analysis at time points day 0 (immediate), week 1 (acute), week 2 (subacute), and week 4 (chronic). RESULTS: The TAO rabbit presented with signs of ischemia of the right digit at week 4. On DSA, the TAO rabbits exhibited formation of corkscrew collaterals starting week 1. On H&E staining, gradual CGSP degradation was observed along with increased red blood cell aggregation and inflammatory cells migration in week 1. On week 2, disorganization of the tunica media layer and vascular smooth muscle cell (VSMC) proliferation was observed. In the TAO rabbit, migrated VSMCs, inflammatory cells, and extracellular matrix with collagen-like substances gradually occluded the lumen. On week 4, the arterial lumen of the TAO rabbit was filled with relatively-organized VSMC and endothelial cell clusters with less inflammatory cells. Neorevascularization was found in the MTX-treated group. CONCLUSION: The novel TAO rabbit model shows a closer resemblance to human TAO clinically, radiographically, and histopathologically. Histological analysis of the IT progression in the TAO model suggests that it is of VSMC origin.

12.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38189619

RESUMEN

We investigate the "roughness" of the energy landscape of a system that diffuses in a heterogeneous medium with a random position-dependent friction coefficient α(x). This random friction acting on the system stems from spatial inhomogeneity in the surrounding medium and is modeled using the generalized Caldira-Leggett model. For a weakly disordered medium exhibiting a Gaussian random diffusivity D(x) = kBT/α(x) characterized by its average value ⟨D(x)⟩ and a pair-correlation function ⟨D(x1)D(x2)⟩, we find that the renormalized intrinsic diffusion coefficient is lower than the average one due to the fluctuations in diffusivity. The induced weak internal friction leads to increased roughness in the energy landscape. When applying this idea to diffusive motion in liquid water, the dissociation energy for a hydrogen bond gradually approaches experimental findings as fluctuation parameters increase. Conversely, for a strongly disordered medium (i.e., ultrafast-folding proteins), the energy landscape ranges from a few to a few kcal/mol, depending on the strength of the disorder. By fitting protein folding dynamics to the escape process from a metastable potential, the decreased escape rate conceptualizes the role of strong internal friction. Studying the energy landscape in complex systems is helpful because it has implications for the dynamics of biological, soft, and active matter systems.

13.
Nucleic Acids Res ; 50(D1): D1040-D1045, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34792158

RESUMEN

Insects are the largest group of animals on the planet and have a huge impact on human life by providing resources, transmitting diseases, and damaging agricultural crop production. Recently, a large amount of insect genome and gene data has been generated. A comprehensive database is highly desirable for managing, sharing, and mining these resources. Here, we present an updated database, InsectBase 2.0 (http://v2.insect-genome.com/), covering 815 insect genomes, 25 805 transcriptomes and >16 million genes, including 15 045 111 coding sequences, 3 436 022 3'UTRs, 4 345 664 5'UTRs, 112 162 miRNAs and 1 293 430 lncRNAs. In addition, we used an in-house standard pipeline to annotate 1 434 653 genes belonging to 164 gene families; 215 986 potential horizontally transferred genes; and 419 KEGG pathways. Web services such as BLAST, JBrowse2 and Synteny Viewer are provided for searching and visualization. InsectBase 2.0 serves as a valuable platform for entomologists and researchers in the related communities of animal evolution and invertebrate comparative genomics.


Asunto(s)
Bases de Datos Genéticas , Genoma de los Insectos/genética , Insectos/genética , Programas Informáticos , Animales , Insectos/clasificación , MicroARNs/genética , Sintenía/genética
14.
PLoS Genet ; 17(3): e1009355, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760820

RESUMEN

Neurogenesis in the developing neocortex begins with the generation of the preplate, which consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons. Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neurogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at multiple early neurogenic stages have revealed the temporal gene expression dynamics of early neurogenesis and distinct histone modification patterns in early differentiating neurons. We have identified a new set of coding genes and lncRNAs involved in early neuronal differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5 when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these cells are classified into three different developing states, revealing genetic cascades from early generic neuronal differentiation to late fate specification during the establishment of CR neuron identity and function. Our findings shed light on the molecular mechanisms governing the early differentiation steps during cortical development, especially CR neuron differentiation.


Asunto(s)
Diferenciación Celular , Genómica , Neurogénesis/genética , Neuronas/metabolismo , Lóbulo Temporal/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Diferenciación Celular/genética , Células Cultivadas , Corteza Cerebral/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Heterogeneidad Genética , Genómica/métodos , Histonas , Inmunohistoquímica , Ratones , Ratones Transgénicos , Neuronas/citología , ARN Largo no Codificante/genética , Análisis de la Célula Individual , Factores de Transcripción , Sitio de Iniciación de la Transcripción
15.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33785593

RESUMEN

During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand-receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein-coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Nicho de Células Madre , Animales , Linaje de la Célula , Feto/metabolismo , Perfilación de la Expresión Génica , Humanos , Hígado/metabolismo , Ratones , Análisis de la Célula Individual , Pez Cebra
16.
Angew Chem Int Ed Engl ; : e202412890, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148428

RESUMEN

The design of three-dimensional covalent organic frameworks (3D COFs) using linear and trigonal linkers remains challenging due to the difficulty in achieving a specific non-planar spatial arrangement with low-connectivity building units. Here, we report the novel 3D COFs with linear and trigonal linkers, termed TMB-COFs, exhibiting srs topology. The steric hindrance provides an additional force to alter the torsion angles of peripheral triangular units, guiding the linear unit to connect with the trigonal unit into 3D srs frameworks, rather than the more commonly observed two-dimensional (2D) hcb structures. Furthermore, we comprehensively examined the hydrogen peroxide photocatalytic production capacity of the TMB-COFs in comparison with analogous 2D COFs. The experimental results and DFT calculations demonstrate a significant enhancement in photocatalytic hydrogen peroxide production efficacy through framework regulation. This work emphasizes the steric configuration using low connectivity building units, offering a fresh perspective on the design and application of 3D COFs.

17.
Chemistry ; 29(62): e202302201, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37565784

RESUMEN

Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.

18.
Nucleic Acids Res ; 49(4): 1972-1986, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503260

RESUMEN

Maintenance of stem-cell identity requires proper regulation of enhancer activity. Both transcription factors OCT4/SOX2/NANOG and histone methyltransferase complexes MLL/SET1 were shown to regulate enhancer activity, but how they are regulated in embryonic stem cells (ESCs) remains further studies. Here, we report a transcription factor BACH1, which directly interacts with OCT4/SOX2/NANOG (OSN) and MLL/SET1 methyltransferase complexes and maintains pluripotency in mouse ESCs (mESCs). BTB domain and bZIP domain of BACH1 are required for these interactions and pluripotency maintenance. Loss of BACH1 reduced the interaction between NANOG and MLL1/SET1 complexes, and decreased their occupancy on chromatin, and further decreased H3 lysine 4 trimethylation (H3K4me3) level on gene promoters and (super-) enhancers, leading to decreased enhancer activity and transcription activity, especially on stemness-related genes. Moreover, BACH1 recruited NANOG through chromatin looping and regulated remote NANOG binding, fine-tuning enhancer-promoter activity and gene expression. Collectively, these observations suggest that BACH1 maintains pluripotency in ESCs by recruiting NANOG and MLL/SET1 complexes to chromatin and maintaining the trimethylated state of H3K4 and enhancer-promoter activity, especially on stemness-related genes.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína Homeótica Nanog/metabolismo , Regiones Promotoras Genéticas , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Línea Celular , Células Cultivadas , Cromatina/metabolismo , Histonas/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Dominios Proteicos , Factores de Transcripción SOXB1/metabolismo
19.
Nano Lett ; 22(1): 220-228, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962400

RESUMEN

A strong light-matter interaction is highly desirable from the viewpoint of both fundamental research and practical application. Here, we propose a dielectric-metal hybrid nanocavity composed of a silicon (Si) nanoparticle and a thin gold (Au) film and investigate numerically and experimentally the coupling between the plasmons supported by the nanocavity and the excitons in an embedded tungsten disulfide (WS2) monolayer. When a Si/WS2/Au nanocavity is excited by the surface plasmon polariton generated on the surface of the Au film, greatly enhanced plasmon-exciton coupling originating from the hybridization of the surface plasmon polariton, the mirror-image-induced magnetic dipole, and the exciton modes is clearly revealed in the angle- or size-resolved scattering spectra. A Rabi splitting as large as ∼240 meV is extracted by fitting the experimental data with a coupled harmonic oscillator model containing three oscillators. Our findings open new horizons for constructing nanoscale photonic devices by exploiting dielectric-metal hybrid nanocavities.

20.
Entropy (Basel) ; 25(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37509959

RESUMEN

In statistical mechanics, the ergodic hypothesis (i.e., the long-time average is the same as the ensemble average) accompanying anomalous diffusion has become a continuous topic of research, being closely related to irreversibility and increasing entropy. While measurement time is finite for a given process, the time average of an observable quantity might be a random variable, whose distribution width narrows with time, and one wonders how long it takes for the convergence rate to become a constant. This is also the premise of ergodic establishment, because the ensemble average is always equal to the constant. We focus on the time-dependent fluctuation width for the time average of both the velocity and kinetic energy of a force-free particle described by the generalized Langevin equation, where the stationary velocity autocorrelation function is considered. Subsequently, the shortest time scale can be estimated for a system transferring from a stationary state to an effective ergodic state. Moreover, a logarithmic spatial potential is used to modulate the processes associated with free ballistic diffusion and the control of diffusion, as well as the minimal realization of the whole power-law regime. The results presented suggest that non-ergodicity mimics the sparseness of the medium and reveals the unique role of logarithmic potential in modulating diffusion behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA