Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Mater ; 14(1): 125-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362355

RESUMEN

Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.


Asunto(s)
Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Orgánulos/química , Orgánulos/genética , Orgánulos/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Stem Cell Res Ther ; 10(1): 116, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953537

RESUMEN

BACKGROUND: The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair. METHODS: Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution. Various in vitro models were used to evaluate the effects of the secretome on cellular processes that promote tissue regeneration. A cardiotoxin-induced skeletal muscle injury model was used to test the regenerative effects of the whole secretome or isolated extracellular vesicle fraction in vivo. This was followed by bioinformatic analysis of the components of the protein and miRNA content of the secretome and finally compared to a secretome generated from a secondary stem cell source. RESULTS: Here we have demonstrated that the secretome from adipose-derived mesenchymal stem cells shows robust effects on cellular processes that promote tissue regeneration. Furthermore, we show that the whole ADSC secretome is capable of enhancing the rate of skeletal muscle regeneration following acute damage. We assessed the efficacy of the total secretome compared with the extracellular vesicle fraction on a number of assays that inform on tissue regeneration and demonstrate that both fractions affect different aspects of the process in vitro and in vivo. Our in vitro, in vivo, and bioinformatic results show that factors that promote regeneration are distributed both within extracellular vesicles and the soluble fraction of the secretome. CONCLUSIONS: Taken together, our study implies that extracellular vesicles and soluble molecules within ADSC secretome act in a synergistic manner to promote muscle generation.


Asunto(s)
Células Madre Mesenquimatosas/citología , Músculo Esquelético/crecimiento & desarrollo , Proteoma/genética , Regeneración/genética , Animales , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/genética , Vesículas Extracelulares/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/patología , Ratones , MicroARNs/genética , Músculo Esquelético/metabolismo , Proteínas/genética , Solubilidad
3.
J Cachexia Sarcopenia Muscle ; 10(3): 662-686, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30916493

RESUMEN

BACKGROUND: One of the principles underpinning our understanding of ageing is that DNA damage induces a stress response that shifts cellular resources from growth towards maintenance. A contrasting and seemingly irreconcilable view is that prompting growth of, for example, skeletal muscle confers systemic benefit. METHODS: To investigate the robustness of these axioms, we induced muscle growth in a murine progeroid model through the use of activin receptor IIB ligand trap that dampens myostatin/activin signalling. Progeric mice were then investigated for neurological and muscle function as well as cellular profiling of the muscle, kidney, liver, and bone. RESULTS: We show that muscle of Ercc1Δ/- progeroid mice undergoes severe wasting (decreases in hind limb muscle mass of 40-60% compared with normal mass), which is largely protected by attenuating myostatin/activin signalling using soluble activin receptor type IIB (sActRIIB) (increase of 30-62% compared with untreated progeric). sActRIIB-treated progeroid mice maintained muscle activity (distance travel per hour: 5.6 m in untreated mice vs. 13.7 m in treated) and increased specific force (19.3 mN/mg in untreated vs. 24.0 mN/mg in treated). sActRIIb treatment of progeroid mice also improved satellite cell function especially their ability to proliferate on their native substrate (2.5 cells per fibre in untreated progeroids vs. 5.4 in sActRIIB-treated progeroids after 72 h in culture). Besides direct protective effects on muscle, we show systemic improvements to other organs including the structure and function of the kidneys; there was a major decrease in the protein content in urine (albumin/creatinine of 4.9 sActRIIB treated vs. 15.7 in untreated), which is likely to be a result in the normalization of podocyte foot processes, which constitute the filtration apparatus (glomerular basement membrane thickness reduced from 224 to 177 nm following sActRIIB treatment). Treatment of the progeric mice with the activin ligand trap protected against the development of liver abnormalities including polyploidy (18.3% untreated vs. 8.1% treated) and osteoporosis (trabecular bone volume; 0.30 mm3 in treated progeroid mice vs. 0.14 mm3 in untreated mice, cortical bone volume; 0.30 mm3 in treated progeroid mice vs. 0.22 mm3 in untreated mice). The onset of neurological abnormalities was delayed (by ~5 weeks) and their severity reduced, overall sustaining health without affecting lifespan. CONCLUSIONS: This study questions the notion that tissue growth and maintaining tissue function during ageing are incompatible mechanisms. It highlights the need for future investigations to assess the potential of therapies based on myostatin/activin blockade to compress morbidity and promote healthy ageing.


Asunto(s)
Activinas/antagonistas & inhibidores , Envejecimiento/patología , Músculo Esquelético/patología , Transducción de Señal/efectos de los fármacos , Síndrome Debilitante/prevención & control , Receptores de Activinas Tipo II/administración & dosificación , Receptores de Activinas Tipo II/genética , Activinas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Endonucleasas/genética , Femenino , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Miostatina/metabolismo , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Índice de Severidad de la Enfermedad , Síndrome Debilitante/diagnóstico , Síndrome Debilitante/genética , Síndrome Debilitante/patología
4.
Stem Cells Dev ; 26(18): 1316-1333, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28679310

RESUMEN

The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.


Asunto(s)
Líquido Amniótico/citología , Células Madre Embrionarias/citología , Vesículas Extracelulares/trasplante , Músculo Esquelético/fisiología , Neovascularización Fisiológica , Proteoma/metabolismo , Regeneración , Líquido Amniótico/metabolismo , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/citología
5.
Elife ; 52016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27494364

RESUMEN

A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn(-/-)/Errγ(Tg/+)) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn(-/-)/Errγ(Tg/+) mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal , Regeneración , Células Satélite del Músculo Esquelético/fisiología , Animales , Ratones , Ratones Noqueados , Miostatina/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA