Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 556(7702): 515-519, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670280

RESUMEN

The NMDA (N-methyl-D-aspartate) receptor transduces the binding of glutamate and glycine, coupling it to the opening of a calcium-permeable ion channel 1 . Owing to the lack of high-resolution structural studies of the NMDA receptor, the mechanism by which ion-channel blockers occlude ion permeation is not well understood. Here we show that removal of the amino-terminal domains from the GluN1-GluN2B NMDA receptor yields a functional receptor and crystals with good diffraction properties, allowing us to map the binding site of the NMDA receptor blocker, MK-801. This crystal structure, together with long-timescale molecular dynamics simulations, shows how MK-801 and memantine (a drug approved for the treatment of Alzheimer's disease) bind within the vestibule of the ion channel, promote closure of the ion channel gate and lodge between the M3-helix-bundle crossing and the M2-pore loops, physically blocking ion permeation.


Asunto(s)
Maleato de Dizocilpina/farmacología , Activación del Canal Iónico/efectos de los fármacos , Memantina/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Sitios de Unión , Cristalografía por Rayos X , Maleato de Dizocilpina/química , Memantina/química , Simulación de Dinámica Molecular , Dominios Proteicos , Receptores AMPA/química , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Especificidad por Sustrato , Xenopus
2.
Nature ; 466(7303): 203-8, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20613835

RESUMEN

Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Activación del Canal Iónico , Canales de Potasio/química , Streptomyces lividans/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Electrones , Cinética , Modelos Biológicos , Modelos Moleculares , Potasio/metabolismo , Canales de Potasio/metabolismo , Conformación Proteica , Relación Estructura-Actividad
3.
Nature ; 466(7303): 272-5, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20613845

RESUMEN

The coupled interplay between activation and inactivation gating is a functional hallmark of K(+) channels. This coupling has been experimentally demonstrated through ion interaction effects and cysteine accessibility, and is associated with a well defined boundary of energetically coupled residues. The structure of the K(+) channel KcsA in its fully open conformation, in addition to four other partial channel openings, richly illustrates the structural basis of activation-inactivation gating. Here, we identify the mechanistic principles by which movements on the inner bundle gate trigger conformational changes at the selectivity filter, leading to the non-conductive C-type inactivated state. Analysis of a series of KcsA open structures suggests that, as a consequence of the hinge-bending and rotation of the TM2 helix, the aromatic ring of Phe 103 tilts towards residues Thr 74 and Thr 75 in the pore-helix and towards Ile 100 in the neighbouring subunit. This allows the network of hydrogen bonds among residues Trp 67, Glu 71 and Asp 80 to destabilize the selectivity filter, allowing entry to its non-conductive conformation. Mutations at position 103 have a size-dependent effect on gating kinetics: small side-chain substitutions F103A and F103C severely impair inactivation kinetics, whereas larger side chains such as F103W have more subtle effects. This suggests that the allosteric coupling between the inner helical bundle and the selectivity filter might rely on straightforward mechanical deformation propagated through a network of steric contacts. Average interactions calculated from molecular dynamics simulations show favourable open-state interaction-energies between Phe 103 and the surrounding residues. We probed similar interactions in the Shaker K(+) channel where inactivation was impaired in the mutant I470A. We propose that side-chain rearrangements at position 103 mechanically couple activation and inactivation in KcsA and a variety of other K(+) channels.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Canales de Potasio/química , Canales de Potasio/metabolismo , Streptomyces lividans/química , Regulación Alostérica , Proteínas Bacterianas/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Fenilalanina/metabolismo , Canales de Potasio/genética , Conformación Proteica , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo , Relación Estructura-Actividad
4.
Proc Natl Acad Sci U S A ; 107(13): 5833-8, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20231479

RESUMEN

We present the first atomic-resolution observations of permeation and gating in a K(+) channel, based on molecular dynamics simulations of the Kv1.2 pore domain. Analysis of hundreds of simulated permeation events revealed a detailed conduction mechanism, resembling the Hodgkin-Keynes "knock-on" model, in which translocation of two selectivity filter-bound ions is driven by a third ion; formation of this knock-on intermediate is rate determining. In addition, at reverse or zero voltages, we observed pore closure by a novel "hydrophobic gating" mechanism: A dewetting transition of the hydrophobic pore cavity-fastest when K(+) was not bound in selectivity filter sites nearest the cavity-caused the open, conducting pore to collapse into a closed, nonconducting conformation. Such pore closure corroborates the idea that voltage sensors can act to prevent pore collapse into the intrinsically more stable, closed conformation, and it further suggests that molecular-scale dewetting facilitates a specific biological function: K(+) channel gating. Existing experimental data support our hypothesis that hydrophobic gating may be a fundamental principle underlying the gating of voltage-sensitive K(+) channels. We suggest that hydrophobic gating explains, in part, why diverse ion channels conserve hydrophobic pore cavities, and we speculate that modulation of cavity hydration could enable structural determination of both open and closed channels.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/metabolismo , Animales , Fenómenos Biofísicos , Conductividad Eléctrica , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Cinética , Modelos Biológicos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Ratas
5.
J Gen Physiol ; 155(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36524993

RESUMEN

Inward-rectifier potassium channels (Kirs) are lipid-gated ion channels that differ from other K+ channels in that they allow K+ ions to flow more easily into, rather than out of, the cell. Inward rectification is known to result from endogenous magnesium ions or polyamines (e.g., spermine) binding to Kirs, resulting in a block of outward potassium currents, but questions remain regarding the structural and dynamic basis of the rectification process and lipid-dependent channel activation. Here, we present the results of long-timescale molecular dynamics simulations starting from a crystal structure of phosphatidylinositol 4,5-bisphosphate (PIP2)-bound chicken Kir2.2 with a non-conducting pore. After introducing a mutation (G178R) that is known to increase the open probability of a homologous channel, we were able to observe transitions to a stably open, ion-conducting pore, during which key conformational changes occurred in the main activation gate and the cytoplasmic domain. PIP2 binding appeared to increase stability of the pore in its open and conducting state, as PIP2 removal resulted in pore closure, with a median closure time about half of that with PIP2 present. To investigate structural details of inward rectification, we simulated spermine binding to and unbinding from the open pore conformation at positive and negative voltages, respectively, and identified a spermine-binding site located near a previously hypothesized site between the pore cavity and the selectivity filter. We also studied the effects of long-range electrostatics on conduction and spermine binding by mutating charged residues in the cytoplasmic domain and found that a finely tuned charge density, arising from basic and acidic residues within the cytoplasmic domain, modulated conduction and rectification.


Asunto(s)
Canales de Potasio de Rectificación Interna , Canales de Potasio de Rectificación Interna/metabolismo , Espermina/metabolismo , Poliaminas/metabolismo , Potasio/metabolismo , Lípidos , Oocitos/metabolismo
6.
Structure ; 31(12): 1556-1566.e3, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37729917

RESUMEN

The cation channel TRPA1 is a potentially important drug target, and characterization of TRPA1 functional dynamics might help guide structure-based drug design. Here, we present results from long-timescale molecular dynamics simulations of TRPA1 with an allosteric activator, allyl isothiocyanate (AITC), in which we observed spontaneous transitions from a closed, non-conducting channel conformation into an open, conducting conformation. Based on these transitions, we propose a gating mechanism in which movement of a regulatory TRP-like domain allosterically translates into pore opening in a manner reminiscent of pore opening in voltage-gated ion channels. In subsequent experiments, we found that mutations that disrupt packing of the S4-S5 linker-TRP-like domain and the S5 and S6 helices also affected channel activity. In simulations, we also observed A-967079, a known allosteric inhibitor, binding between helices S5 and S6, suggesting that A-967079 may suppress activity by stabilizing a non-conducting pore conformation-a finding consistent with our proposed gating mechanism.


Asunto(s)
Oximas , Mutación , Estructura Secundaria de Proteína
7.
Biochemistry ; 51(41): 8132-42, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22989304

RESUMEN

The voltage-sensing domain (VSD) is the common scaffold responsible for the functional behavior of voltage-gated ion channels, voltage sensitive enzymes, and proton channels. Because of the position of the voltage dependence of the available VSD structures, at present, they all represent the activated state of the sensor. Yet in the absence of a consensus resting state structure, the mechanistic details of voltage sensing remain controversial. The voltage dependence of the VSD from Ci-VSP (Ci-VSD) is dramatically right shifted, so that at 0 mV it presumably populates the putative resting state. Appropriate biochemical methods are an essential prerequisite for generating sufficient amounts of Ci-VSD protein for high-resolution structural studies. Here, we present a simple and robust protocol for the expression of eukaryotic Ci-VSD in Escherichia coli at milligram levels. The protein is pure, homogeneous, monodisperse, and well-folded after solubilization in Anzergent 3-14 at the analyzed concentration (~0.3 mg/mL). Ci-VSD can be reconstituted into liposomes of various compositions, and initial site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopic measurements indicate its first transmembrane segment folds into an α-helix, in agreement with the homologous region of other VSDs. On the basis of our results and enhanced relaxation EPR spectroscopy measurement, Ci-VSD reconstitutes essentially randomly in proteoliposomes, precluding straightforward application of transmembrane voltages in combination with spectroscopic methods. Nevertheless, these results represent an initial step that makes the resting state of a VSD accessible to a variety of biophysical and structural approaches, including X-ray crystallography, spectroscopic methods, and electrophysiology in lipid bilayers.


Asunto(s)
Ciona intestinalis/enzimología , Activación del Canal Iónico , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , ADN Complementario , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Homología de Secuencia de Aminoácido , Solubilidad
8.
Biophys J ; 100(10): 2387-93, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21575572

RESUMEN

In the prokaryotic potassium channel KcsA activation gating at the inner bundle gate is followed by C-type inactivation at the selectivity filter. Entry into the C-type inactivated state has been directly linked to the strength of the H-bond interaction between residues Glu-71 and Asp-80 behind the filter, and is allosterically triggered by the rearrangement of the inner bundle gate. Here, we show that H-bond pairing between residues Trp-67 and Asp-80, conserved in most K⁺ channels, constitutes another critical interaction that determines the rate and extent of KcsA C-type inactivation. Disruption of the equivalent interaction in Shaker (Trp-434-Asp-447) and Kv1.2 (Trp-366-Asp-379) leads also to modulation of the inactivation process, suggesting that these residues also play an analogous role in the inactivation gating of Kv channels. The present results show that in KcsA C-type inactivation gating is governed by a multipoint hydrogen-bond network formed by the triad Trp-67-Glu71-Asp-80. This triad exerts a critical role in the dynamics and conformational stability of the selectivity filter and might serve as a general modulator of selectivity filter gating in other members of the K⁺ channel family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Ácido Aspártico/metabolismo , Proteínas Bacterianas/química , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Canales de Potasio/química , Unión Proteica , Ratas , Triptófano/metabolismo , Xenopus
9.
Nat Struct Mol Biol ; 13(4): 311-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16532009

RESUMEN

We show that in the potassium channel KcsA, proton-dependent activation is followed by an inactivation process similar to C-type inactivation, and this process is suppressed by an E71A mutation in the pore helix. EPR spectroscopy demonstrates that the inner gate opens maximally at low pH regardless of the magnitude of the single-channel-open probability, implying that stationary gating originates mostly from rearrangements at the selectivity filter. Two E71A crystal structures obtained at 2.5 A reveal large structural excursions of the selectivity filter during ion conduction and provide a glimpse of the range of conformations available to this region of the channel during gating. These data establish a mechanistic basis for the role of the selectivity filter during channel activation and inactivation.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Canales de Potasio/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Termodinámica
10.
J Crohns Colitis ; 15(11): 1943-1958, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33891001

RESUMEN

BACKGROUND AND AIMS: The potassium channel Kv1.3 is a potentially attractive therapeutic target in T cell-mediated inflammatory diseases, as the activity of antigen-activated T cells is selectively impeded by Kv1.3 inhibition. In this study, we examined Kv1.3 as a potential therapeutic intervention point for ulcerative colitis [UC], and studied the efficacy of DES1, a small-molecule inhibitor of Kv1.3, in vitro and in vivo. METHODS: Kv1.3 expression on T cells in peripheral blood mononuclear cells [PBMCs] isolated from donors with and without UC was examined by flow cytometry. In biopsies from UC patients, Kv1.3-expressing CD4+ T cells were detected by flow cytometry and immunohistochemistry. In vitro, we determined the ability of DES1 to inhibit anti-CD3-driven activation of T cells. In vivo, the efficacy of DES1 was determined in a humanised mouse model of UC and compared with infliximab and tofacitinib in head-to-head studies. RESULTS: Kv1.3 expression was elevated in PBMCs from UC patients and correlated with the prevalence of TH1 and TH2 T cells. Kv1.3 expression was also detected on T cells from biopsies of UC patients. In vitro, DES1 suppressed anti-CD3-driven activation of T cells in a concentration-dependent manner. In vivo, DES1 significantly ameliorated inflammation in the UC model and most effectively so when PBMCs from donors with higher levels of activated T cells were selected for reconstitution. The efficacy of DES1 was comparable to that of either infliximab or tofacitinib. CONCLUSION: Inhibition of Kv1.3 [by DES1, for instance] appears to be a potential therapeutic intervention strategy for UC patients.


Asunto(s)
Colitis Ulcerosa/complicaciones , Inflamación/tratamiento farmacológico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Proteínas de la Membrana/uso terapéutico , Oxidorreductasas/uso terapéutico , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/fisiopatología , Modelos Animales de Enfermedad , Alemania , Inflamación/fisiopatología , Leucocitos Mononucleares/efectos de los fármacos , Proteínas de la Membrana/farmacología , Ratones , Oxidorreductasas/farmacología
11.
Biophys J ; 98(10): 2189-98, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20483327

RESUMEN

The atomic models of the Kv1.2 potassium channel in the active and resting state, originally presented elsewhere, are here refined using molecular dynamics simulations in an explicit membrane-solvent environment. With a minor adjustment of the orientation of the first arginine along the S4 segment, the total gating charge of the channel determined from >0.5 mus of molecular dynamics simulation is approximately 12-12.7 e, in good accord with experimental estimates for the Shaker potassium channel, indicating that the final models offer a realistic depiction of voltage-gating. In the resting state of Kv1.2, the S4 segment in the voltage-sensing domain (VSD) spontaneously converts into a 3(10) helix over a stretch of 10 residues. The 3(10) helical conformation orients the gating arginines on S4 toward a water-filled crevice within the VSD and allows salt-bridge interactions with negatively charged residues along S2 and S3. Free energy calculations of the fractional transmembrane potential, acting upon key charged residues of the VSD, reveals that the applied field varies rapidly over a narrow region of 10-15 A corresponding to the outer leaflet of the bilayer. The focused field allows the transfer of a large gating charge without translocation of S4 across the membrane.


Asunto(s)
Canal de Potasio Kv.1.2/metabolismo , Simulación de Dinámica Molecular/estadística & datos numéricos , Estructura Terciaria de Proteína/fisiología , Animales , Electricidad , Secuencias Hélice-Asa-Hélice , Ratones , Modelos Moleculares , Conformación Proteica , Electricidad Estática
12.
Biophys J ; 99(9): 2863-9, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21044583

RESUMEN

For ion channels, the transmembrane potential plays a critical role by acting as a driving force for permeant ions. At the microscopic level, the transmembrane potential is thought to decay nonlinearly across the ion permeation pathway because of the irregular three-dimensional shape of the channel's pore. By taking advantage of the current structural and functional understanding of cyclic nucleotide-gated channels, in this study we experimentally explore the transmembrane potential's distribution across the open pore. As a readout for the voltage drop, we engineered cysteine residues along the selectivity filter and scanned the sensitivity of their modification rates by Ag(+) to the transmembrane potential. The experimental data, which indicate that the majority of the electric field drops across the selectivity filter, are in good agreement with continuum electrostatic calculations using a homology model of an open CNG channel. By focusing the transmembrane potential across the selectivity filter, the electromotive driving force is coupled with the movement of permeant ions in the filter, maximizing the efficiency of this process.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Sustitución de Aminoácidos , Animales , Fenómenos Biofísicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Cisteína/química , Femenino , Técnicas In Vitro , Cinética , Potenciales de la Membrana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oocitos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Xenopus
13.
J Mol Biol ; 365(3): 649-62, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17070844

RESUMEN

The mechanism of intracellular blockade of the KcsA potassium channel by tetrabutylammonium (TBA) is investigated through functional, structural and computational studies. Using planar-membrane electrophysiological recordings, we characterize the binding kinetics as well as the dependence on the transmembrane voltage and the concentration of the blocker. It is found that the apparent affinity of the complex is significantly greater than that of any of the eukaryotic K(+) channels studied previously, and that the off-rate increases with the applied transmembrane voltage. In addition, we report a crystal structure of the KcsA-TBA complex at 2.9 A resolution, with TBA bound inside the large hydrophobic cavity located at the center of the channel, consistent with the results of previous functional and structural studies. Of particular interest is the observation that the presence of TBA has a negligible effect on the channel structure and on the position of the potassium ions occupying the selectivity filter. Inspection of the electron density corresponding to TBA suggests that the ligand may adopt more than one conformation in the complex, though the moderate resolution of the data precludes a definitive interpretation on the basis of the crystallographic refinement methods alone. To provide a rationale for these observations, we carry out an extensive conformational sampling of an atomic model of TBA bound in the central cavity of KcsA, using the Hamiltonian replica-exchange molecular dynamics simulation method. Comparison of the simulated and experimental density maps indicates that the latter does reflect at least two distinct binding orientations of TBA. The simulations show also that the relative population of these binding modes is dependent on the ion configuration occupying the selectivity filter, thus providing a clue to the nature of the voltage-dependence of the binding kinetics.


Asunto(s)
Simulación por Computador , Activación del Canal Iónico/efectos de los fármacos , Modelos Moleculares , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/química , Canales de Potasio/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Alanina/genética , Cristalografía por Rayos X , Electrofisiología , Membranas Artificiales , Mutación/genética , Estructura Secundaria de Proteína/efectos de los fármacos , Rubidio , Treonina/genética
14.
J Mol Biol ; 354(2): 272-88, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16242718

RESUMEN

Previous calculations using continuum electrostatic calculations showed that a fully hydrated monovalent cation is electrostatically stabilized at the center of the cavity of the KcsA potassium channel. Further analysis demonstrated that this cavity stabilization was controlled by a balance between the unfavorable reaction field due to the finite size of the cavity and the favorable electrostatic field arising from the pore helices. In the present study, continuum electrostatic calculations are used to investigate how the stability of an ion in the intracellular vestibular cavity common to known potassium channels is affected as the inner channel gate opens and the cavity becomes larger and contiguous with the intracellular solution. The X-ray structure of the calcium-activated potassium channel MthK, which was crystallized in the open state, is used to construct models of the KcsA channel in the open state. It is found that, as the channel opens, the barrier at the helix bundle crossing decreases to approximately 0 kcal/mol, but that the ion in the cavity is also significantly destabilized. The results are compared and contrasted with additional calculations performed on the KvAP (voltage-activated) and KirBac1.1 (inward rectifier) channels, as well as models of the pore domain of Shaker in the open and closed state. In conclusion, electrostatic factors give rise to energetic constraints on ion permeation that have important functional consequences on the various K+ channels, and partly explain the presence or absence of charged residues near the inner vestibular entry.


Asunto(s)
Proteínas de Escherichia coli/química , Activación del Canal Iónico , Canales de Potasio Calcio-Activados/química , Canales de Potasio de Rectificación Interna/química , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio/química , Canales de Potasio de la Superfamilia Shaker/química , Vestíbulo del Laberinto/química , Secuencia de Aminoácidos , Proteínas Bacterianas , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática
15.
Biochem J ; 381(Pt 1): 313-9, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15038793

RESUMEN

Transglutaminases (TGases) are Ca2+-dependent enzymes capable of catalysing transamidation of glutamine residues to form intermolecular isopeptide bonds. Nine distinct TGases have been described in mammals, and two of them (types 2 and 3) are regulated by GTP/ATP. TGase2 hydrolyses GTP and is therefore a bifunctional enzyme. In the present study, we report that TGase5 is also regulated by nucleotides. We have identified the putative TGase5 GTP-binding pocket by comparative amino acid sequence alignment and homology-derived three-dimensional modelling. GTP and ATP inhibit TGase5 cross-linking activity in vitro, and Ca2+ is capable of completely reversing this inhibition. In addition, TGase5 mRNA is not restricted to epidermal tissue, but is also present in different adult and foetal tissues, suggesting a role for TGase5 outside the epidermis. These results reveal the reciprocal actions of Ca2+ and nucleotides with respect to TGase5 activity. Taken together, these results indicate that TGases are a complex family of enzymes regulated by calcium, with at least three of them, namely TGase2, TGase3 and TGase5, also being regulated by ATP and GTP.


Asunto(s)
Adenosina Trifosfato/fisiología , Guanosina Trifosfato/fisiología , Transglutaminasas/fisiología , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Aminoaciltransferasas/antagonistas & inhibidores , Animales , Sitios de Unión , Calcio/fisiología , Proteínas de Unión al Calcio/antagonistas & inhibidores , Línea Celular , Activación Enzimática/fisiología , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacología , Cobayas , Humanos , Queratinocitos/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Proteína Glutamina Gamma Glutamiltransferasa 2 , Alineación de Secuencia/métodos , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/biosíntesis , Transglutaminasas/química , Transglutaminasas/metabolismo
16.
J Gen Physiol ; 141(5): 619-32, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23589581

RESUMEN

The difficulty in characterizing ion conduction through membrane channels at the level of individual permeation events has made it challenging to elucidate the mechanistic principles underpinning this fundamental physiological process. Using long, all-atom simulations enabled by special-purpose hardware, we studied K(+) permeation across the KV1.2/2.1 voltage-gated potassium channel. At experimentally accessible voltages, which include the physiological range, the simulated permeation rate was substantially lower than the experimentally observed rate. The current-voltage relationship was also nonlinear but became linear at much higher voltages. We observed permeation consistent with a "knock-on" mechanism at all voltages. At high voltages, the permeation rate was in accordance with our previously reported KV1.2 pore-only simulations, after the simulated voltages from the previous study were recalculated using the correct method, new insight into which is provided here. Including the voltage-sensing domains in the simulated channel brought the linear current-voltage regime closer to the experimentally accessible voltages. The simulated permeation rate, however, still underestimated the experimental rate, because formation of the knock-on intermediate occurred too infrequently. Reducing the interaction strength between the ion and the selectivity filter did not increase conductance. In complementary simulations of gramicidin A, similar changes in interaction strength did increase the observed permeation rate. Permeation nevertheless remained substantially below the experimental value, largely because of infrequent ion recruitment into the pore lumen. Despite the need to apply large voltages to simulate the permeation process, the apparent voltage insensitivity of the permeation mechanism suggests that the direct simulation of permeation at the single-ion level can provide fundamental physiological insight into ion channel function. Notably, our simulations suggest that the knock-on permeation mechanisms in KV1.2 and KcsA may be different.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio Kv.1.2/metabolismo , Canales de Potasio Shab/metabolismo , Conductividad Eléctrica , Potenciales de la Membrana/fisiología , Modelos Biológicos , Permeabilidad , Potasio/metabolismo
17.
Science ; 336(6078): 229-33, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22499946

RESUMEN

The mechanism of ion channel voltage gating-how channels open and close in response to voltage changes-has been debated since Hodgkin and Huxley's seminal discovery that the crux of nerve conduction is ion flow across cellular membranes. Using all-atom molecular dynamics simulations, we show how a voltage-gated potassium channel (KV) switches between activated and deactivated states. On deactivation, pore hydrophobic collapse rapidly halts ion flow. Subsequent voltage-sensing domain (VSD) relaxation, including inward, 15-angstrom S4-helix motion, completes the transition. On activation, outward S4 motion tightens the VSD-pore linker, perturbing linker-S6-helix packing. Fluctuations allow water, then potassium ions, to reenter the pore; linker-S6 repacking stabilizes the open pore. We propose a mechanistic model for the sodium/potassium/calcium voltage-gated ion channel superfamily that reconciles apparently conflicting experimental data.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/metabolismo , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Potenciales de la Membrana , Modelos Biológicos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
18.
Structure ; 20(8): 1332-42, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22771214

RESUMEN

In K+ channels, rearrangements of the pore outer vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggests these movements to be modest in magnitude. In this study, we show that under physiological conditions, the KcsA outer vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+ -bound Y82C-KcsA in the closed state, together with electron paramagnetic resonance distance measurements in the KcsA outer vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation.


Asunto(s)
Proteínas Bacterianas/química , Cadmio/química , Complejos de Coordinación/química , Canales de Potasio/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Liposomas/química , Simulación de Dinámica Molecular , Canales de Potasio/genética , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Streptomyces lividans , Termodinámica
19.
Nat Struct Mol Biol ; 18(1): 67-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21186363

RESUMEN

Modal-gating shifts represent an effective regulatory mechanism by which ion channels control the extent and time course of ionic fluxes. Under steady-state conditions, the K(+) channel KcsA shows three distinct gating modes, high-P(o), low-P(o) and a high-frequency flicker mode, each with about an order of magnitude difference in their mean open times. Here we show that in the absence of C-type inactivation, mutations at the pore-helix position Glu71 unmask a series of kinetically distinct modes of gating in a side chain-specific way. These gating modes mirror those seen in wild-type channels and suggest that specific interactions in the side chain network surrounding the selectivity filter, in concert with ion occupancy, alter the relative stability of pre-existing conformational states of the pore. The present results highlight the key role of the selectivity filter in regulating modal gating behavior in K(+) channels.


Asunto(s)
Proteínas Bacterianas/química , Activación del Canal Iónico , Canales de Potasio/química , Sustitución de Aminoácidos , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mutación , Canales de Potasio/fisiología , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína
20.
FEBS Lett ; 584(6): 1126-32, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20138880

RESUMEN

Activation gating in KcsA is elicited by changes in intracellular proton concentration. Thompson et al. identified a charge cluster around the inner gate that plays a key role in defining proton activation in KcsA. Here, through functional and spectroscopic approaches, we confirmed the role of this charge cluster and now provide a mechanism of pH-dependent gating. Channel opening is driven by a set of electrostatic interactions that include R117, E120 and E118 at the bottom of TM2 and H25 at the end of TM1. We propose that electrostatic compensation in this charge cluster stabilizes the closed conformation at neutral pH and that its disruption at low pH facilitates the transition to the open conformation by means of helix-helix repulsion.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Canales de Potasio/química , Canales de Potasio/metabolismo , Protones , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Concentración Osmolar , Canales de Potasio/genética , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA