Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376487

RESUMEN

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Asunto(s)
Balaenoptera , Neoplasias , Animales , Balaenoptera/genética , Duplicaciones Segmentarias en el Genoma , Genoma , Demografía , Neoplasias/genética
2.
Proc Natl Acad Sci U S A ; 119(51): e2213096119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508678

RESUMEN

Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis, a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.


Asunto(s)
Hormigas , Hypocreales , Parásitos , Animales , Hormigas/genética , Hormigas/microbiología , Filogenia , Simbiosis/genética , Hypocreales/genética
3.
Mol Biol Evol ; 39(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36026509

RESUMEN

Evolutionary innovations generate phenotypic and species diversity. Elucidating the genomic processes underlying such innovations is central to understanding biodiversity. In this study, we addressed the genomic basis of evolutionary novelties in the glassy-winged sharpshooter (Homalodisca vitripennis, GWSS), an agricultural pest. Prominent evolutionary innovations in leafhoppers include brochosomes, proteinaceous structures that are excreted and used to coat the body, and obligate symbiotic associations with two bacterial types that reside within cytoplasm of distinctive cell types. Using PacBio long-read sequencing and Dovetail Omni-C technology, we generated a chromosome-level genome assembly for the GWSS and then validated the assembly using flow cytometry and karyotyping. Additional transcriptomic and proteomic data were used to identify novel genes that underlie brochosome production. We found that brochosome-associated genes include novel gene families that have diversified through tandem duplications. We also identified the locations of genes involved in interactions with bacterial symbionts. Ancestors of the GWSS acquired bacterial genes through horizontal gene transfer (HGT), and these genes appear to contribute to symbiont support. Using a phylogenomics approach, we inferred HGT sources and timing. We found that some HGT events date to the common ancestor of the hemipteran suborder Auchenorrhyncha, representing some of the oldest known examples of HGT in animals. Overall, we show that evolutionary novelties in leafhoppers are generated by the combination of acquiring novel genes, produced both de novo and through tandem duplication, acquiring new symbiotic associations that enable use of novel diets and niches, and recruiting foreign genes to support symbionts and enhance herbivory.


Asunto(s)
Hemípteros , Animales , Evolución Biológica , Genómica , Hemípteros/genética , Proteómica , Simbiosis/genética
4.
BMC Biol ; 18(1): 70, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560686

RESUMEN

BACKGROUND: Fleas (Insecta: Siphonaptera) are small flightless parasites of birds and mammals; their blood-feeding can transmit many serious pathogens (i.e., the etiological agents of bubonic plague, endemic and murine typhus). The lack of flea genome assemblies has hindered research, especially comparisons to other disease vectors. Accordingly, we sequenced the genome of the cat flea, Ctenocephalides felis, an insect with substantial human health and veterinary importance across the globe. RESULTS: By combining Illumina and PacBio sequencing of DNA derived from multiple inbred female fleas with Hi-C scaffolding techniques, we generated a chromosome-level genome assembly for C. felis. Unexpectedly, our assembly revealed extensive gene duplication across the entire genome, exemplified by ~ 38% of protein-coding genes with two or more copies and over 4000 tRNA genes. A broad range of genome size determinations (433-551 Mb) for individual fleas sampled across different populations supports the widespread presence of fluctuating copy number variation (CNV) in C. felis. Similarly, broad genome sizes were also calculated for individuals of Xenopsylla cheopis (Oriental rat flea), indicating that this remarkable "genome-in-flux" phenomenon could be a siphonapteran-wide trait. Finally, from the C. felis sequence reads, we also generated closed genomes for two novel strains of Wolbachia, one parasitic and one symbiotic, found to co-infect individual fleas. CONCLUSION: Rampant CNV in C. felis has dire implications for gene-targeting pest control measures and stands to complicate standard normalization procedures utilized in comparative transcriptomics analysis. Coupled with co-infection by novel Wolbachia endosymbionts-potential tools for blocking pathogen transmission-these oddities highlight a unique and underappreciated disease vector.


Asunto(s)
Ctenocephalides/genética , Variaciones en el Número de Copia de ADN , Duplicación de Gen , Tamaño del Genoma , Animales , Cromosomas , Femenino , Masculino
5.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171258

RESUMEN

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Asunto(s)
Heterópteros/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Secuenciación Completa del Genoma/métodos , Animales , Ecosistema , Transferencia de Gen Horizontal , Tamaño del Genoma , Heterópteros/clasificación , Especies Introducidas , Filogenia
6.
Proc Biol Sci ; 287(1935): 20201388, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32993470

RESUMEN

The structure of a genome can be described at its simplest by the number of chromosomes and the sex chromosome system it contains. Despite over a century of study, the evolution of genome structure on this scale remains recalcitrant to broad generalizations that can be applied across clades. To address this issue, we have assembled a dataset of 823 karyotypes from the insect group Polyneoptera. This group contains orders with a range of variations in chromosome number, and offer the opportunity to explore the possible causes of these differences. We have analysed these data using both phylogenetic and taxonomic approaches. Our analysis allows us to assess the importance of rates of evolution, phylogenetic history, sex chromosome systems, parthenogenesis and genome size on variation in chromosome number within clades. We find that fusions play a key role in the origin of new sex chromosomes, and that orders exhibit striking differences in rates of fusions, fissions and polyploidy. Our results suggest that the difficulty in finding consistent rules that govern evolution at this scale may be due to the presence of many interacting forces that can lead to variation among groups.


Asunto(s)
Evolución Molecular , Insectos , Cromosomas Sexuales , Animales , Femenino , Tamaño del Genoma , Cariotipo , Partenogénesis , Filogenia , Poliploidía
7.
Heredity (Edinb) ; 122(5): 558-569, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30315219

RESUMEN

Intraspecific variation maintained in natural populations has long intrigued scientists and naturalists. One form of this variation, color polymorphisms, provide a rich opportunity to connect genotypic and phenotypic diversity within an ecological and evolutionary context. The existence of color polymorphisms in Panamanian populations of the Neotropical tortoise beetle, Chelymorpha alternans, has been suspected but never systematically explored. To characterize geographic distribution and underlying genetics we sampled a total of 3819 beetles from 28 sites across Panama, quantifying five distinct phenotypes. Two phenotypes, the "metallic" and "rufipennis" are the most widely distributed phenotypes, occurring in nearly all collecting sites. The "veraguensis" phenotype was found to be restricted to the Western end of the Isthmus and the "militaris" phenotypes restricted to sites east of the canal. Controlled matings between phenotypes and reared offspring revealed no indications of reproductive barriers, even among phenotypes which do not co-occur in nature. Color pattern phenotype is largely controlled by Mendelian assortment of four alleles competing at a single locus. A clear dominance hierarchy exists among alleles, with two being co-dominant. Genomic scans from 32 individuals revealed low levels of genetic differentiation, with a small fraction of the genome showing a high degree of divergence. The easily observed variation among populations, simple genetic architecture, and rearing capabilities, make this a promising system for investigating proximate and ultimate factors of phenotypic variation.


Asunto(s)
Escarabajos/genética , Pigmentación/genética , Animales , Evolución Biológica , Femenino , Sitios Genéticos , Tamaño del Genoma , Genoma de los Insectos/genética , Genotipo , Masculino , Panamá , Fenotipo , Filogeografía , Polimorfismo Genético
8.
J Hered ; 110(2): 219-228, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30476187

RESUMEN

Genome sizes are known to vary between closely related species, but the patterns behind this variation have yet to be fully understood. Although this variation has been evaluated between species and within sexes, unknown is the extent to which this variation is driven by differentiation in sex chromosomes. To address this longstanding question, we examine the mode and tempo of genome size evolution for a total of 87 species of Drosophilidae, estimating and updating male genome size values for 44 of these species. We compare the evolution of genome size within each sex to the evolution of the differences between the sexes. Utilizing comparative phylogenetic methods, we find that male and female genome size evolution is largely a neutral process, reflective of phylogenetic relatedness between species, which supports the newly proposed accordion model for genome size change. When similarly analyzed, the difference between the sexes due to heteromorphic sex chromosomes is a dynamic process; the male-female genome size difference increases with time with or without known neo-Y events or complete loss of the Y. Observed instances of rapid change match theoretical expectations and known neo-Y and Y loss events in individual species.


Asunto(s)
Drosophila/genética , Evolución Molecular , Tamaño del Genoma , Genoma , Genómica , Animales , Bases de Datos Genéticas , Drosophila/clasificación , Femenino , Genómica/métodos , Masculino , Filogenia , Cromosomas Sexuales , Factores Sexuales
9.
Environ Sci Technol ; 52(10): 6009-6022, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29634279

RESUMEN

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Ecotoxicología , Sedimentos Geológicos , América del Norte , Pruebas de Toxicidad
10.
Genome Res ; 24(7): 1193-208, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24714809

RESUMEN

The Drosophila melanogaster Genetic Reference Panel (DGRP) is a community resource of 205 sequenced inbred lines, derived to improve our understanding of the effects of naturally occurring genetic variation on molecular and organismal phenotypes. We used an integrated genotyping strategy to identify 4,853,802 single nucleotide polymorphisms (SNPs) and 1,296,080 non-SNP variants. Our molecular population genomic analyses show higher deletion than insertion mutation rates and stronger purifying selection on deletions. Weaker selection on insertions than deletions is consistent with our observed distribution of genome size determined by flow cytometry, which is skewed toward larger genomes. Insertion/deletion and single nucleotide polymorphisms are positively correlated with each other and with local recombination, suggesting that their nonrandom distributions are due to hitchhiking and background selection. Our cytogenetic analysis identified 16 polymorphic inversions in the DGRP. Common inverted and standard karyotypes are genetically divergent and account for most of the variation in relatedness among the DGRP lines. Intriguingly, variation in genome size and many quantitative traits are significantly associated with inversions. Approximately 50% of the DGRP lines are infected with Wolbachia, and four lines have germline insertions of Wolbachia sequences, but effects of Wolbachia infection on quantitative traits are rarely significant. The DGRP complements ongoing efforts to functionally annotate the Drosophila genome. Indeed, 15% of all D. melanogaster genes segregate for potentially damaged proteins in the DGRP, and genome-wide analyses of quantitative traits identify novel candidate genes. The DGRP lines, sequence data, genotypes, quality scores, phenotypes, and analysis and visualization tools are publicly available.


Asunto(s)
Drosophila melanogaster/genética , Variación Genética , Genoma de los Insectos , Fenotipo , Animales , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/microbiología , Femenino , Ligamiento Genético , Tamaño del Genoma , Estudio de Asociación del Genoma Completo , Genotipo , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Desequilibrio de Ligamiento , Masculino , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados
11.
PLoS Genet ; 10(7): e1004522, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25057905

RESUMEN

We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Drosophila melanogaster/genética , Tamaño del Genoma , Animales , Ambiente , Femenino , Variación Genética , Genoma de los Insectos , Hormonas de Insectos/genética
12.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354938

RESUMEN

The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the 'C-value paradox'. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4-5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.


Asunto(s)
Evolución Biológica , Escarabajos/genética , Animales , Femenino , Flujo Genético , Aptitud Genética , Tamaño del Genoma , Genoma de los Insectos , Masculino , Filogenia , Selección Genética
13.
Mol Ecol ; 24(12): 2973-92, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25930679

RESUMEN

Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity.


Asunto(s)
Abejas/genética , Variación Genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Genética de Población , Genotipo , Geografía , Desequilibrio de Ligamiento , Masculino , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Análisis de Secuencia de ADN , España , Análisis Espacial
14.
J Med Entomol ; 51(6): 1283-95, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26309319

RESUMEN

Flies in the family Sarcophagidae incubate their eggs and are known to be ovoviviparous (i.e., ovolarviparous), but a laboratory-maintained colony of Blaesoxipha plinthopyga (Wiedemann) deposited clutches of viable eggs over 10 generations. A description of the egg and first-instar larva of this species is provided along with genetic data (genome size and cytochrome oxidase I sequences). The egg is similar to previously described eggs of other Sarcophagidae but differs in the configuration of the micropyle. In the first-instar larva, the oral ridges are much more developed than has been described for other species. B. plinthopyga has forensic importance, and the present descriptive information is critical for proper case management.


Asunto(s)
Sarcofágidos/ultraestructura , Animales , Bovinos , Femenino , Ciencias Forenses , Genoma de los Insectos , Larva/ultraestructura , Masculino , Óvulo/crecimiento & desarrollo , Óvulo/ultraestructura , Sarcofágidos/genética , Sarcofágidos/crecimiento & desarrollo
15.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38630623

RESUMEN

The jewel scarab Chrysina gloriosa is one of the most charismatic beetles in the United States and is found from the mountains of West Texas to the Southeastern Arizona sky islands. This species is highly sought by professional and amateur collectors worldwide due to its gleaming metallic coloration. However, the impact of the large-scale collection of this beetle on its populations is unknown, and there is a limited amount of genetic information available to make informed decisions about its conservation. As a first step, we present the genome of C. gloriosa, which we reconstructed using a single female specimen sampled from our ongoing effort to document population connectivity and the demographic history of this beetle. Using a combination of long-read sequencing and Omni-C data, we reconstructed the C. gloriosa genome at a near-chromosome level. Our genome assembly consisted of 454 scaffolds spanning 642 MB, with the 10 largest scaffolds capturing 98% of the genome. The scaffold N50 was 72 MB, and the BUSCO score was 95.5%. This genome assembly will be an essential tool to accelerate understanding C. gloriosa biology and help make informed decisions for the conservation of Chrysina and other species with similar distributions in this region. This genome assembly will further serve as a community resource for comparative genomic analysis.


Asunto(s)
Escarabajos , Genoma de los Insectos , Animales , Escarabajos/genética , Genómica/métodos , Anotación de Secuencia Molecular , Femenino
16.
Mol Ecol ; 22(23): 5890-907, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118235

RESUMEN

Understanding the genetic mechanisms of adaptive population divergence is one of the most fundamental endeavours in evolutionary biology and is becoming increasingly important as it will allow predictions about how organisms will respond to global environmental crisis. This is particularly important for the honey bee, a species of unquestionable ecological and economical importance that has been exposed to increasing human-mediated selection pressures. Here, we conducted a single nucleotide polymorphism (SNP)-based genome scan in honey bees collected across an environmental gradient in Iberia and used four FST -based outlier tests to identify genomic regions exhibiting signatures of selection. Additionally, we analysed associations between genetic and environmental data for the identification of factors that might be correlated or act as selective pressures. With these approaches, 4.4% (17 of 383) of outlier loci were cross-validated by four FST -based methods, and 8.9% (34 of 383) were cross-validated by at least three methods. Of the 34 outliers, 15 were found to be strongly associated with one or more environmental variables. Further support for selection, provided by functional genomic information, was particularly compelling for SNP outliers mapped to different genes putatively involved in the same function such as vision, xenobiotic detoxification and innate immune response. This study enabled a more rigorous consideration of selection as the underlying cause of diversity patterns in Iberian honey bees, representing an important first step towards the identification of polymorphisms implicated in local adaptation and possibly in response to recent human-mediated environmental changes.


Asunto(s)
Abejas/genética , Genética de Población , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Sitios Genéticos , Genoma , Masculino , Modelos Genéticos , Portugal , España
17.
J Med Entomol ; 50(2): 425-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23540132

RESUMEN

Forensic entomologists typically use either succession models for postmortem interval (PMI) estimates or development-based models for minimum PMI (PMI(MIN) estimates. Development-based age estimates are calculated with durations of immature stadia and can also include morphological data such as larval size. For developmental data, the first and second instar stages are typically brief with little variation in larval length. The third instar, a much longer stage by comparison, is prone to considerable variation. This variation is, in part, because of the nonlinear growth during the third instar. There is evidence that genetic and environmental factors influence growth curve divergence during this stage. We chose to investigate one genetic factor, sex, as numerous insect species exhibit sex-specific immature growth patterns. The development rate of Lucilia sericata (Meigen) (Diptera: Calliphoridae) males and females is considered here. We previously determined the genome sizes of L. sericata and found significant sexually dimorphic genome sizes. This difference can be exploited to identify larval sex to evaluate male and female immature growth curves. A preliminary development study encompassing the third larval instar was conducted to compare larval lengths for each sex. Results showed length (P < 0.0001) and sex (P < 0.01) were statistically significant predictors of age at two temperatures (30 and 33.5 degrees C), and that total male development was significantly shorter (P < 0.001). These results introduce a new tool, assessment of sex-specific growth, that has the potential to reduce noise in PMI(MIN) estimates when using third instar larvae.


Asunto(s)
Dípteros/crecimiento & desarrollo , Entomología/métodos , Ciencias Forenses/métodos , Animales , Dípteros/genética , Femenino , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Factores Sexuales , Temperatura
18.
Proc Natl Acad Sci U S A ; 107(27): 12168-73, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20566863

RESUMEN

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.


Asunto(s)
Genoma Bacteriano/genética , Genoma de los Insectos/genética , Pediculus/genética , Pediculus/microbiología , Animales , Enterobacteriaceae/genética , Genes Bacterianos/genética , Genes de Insecto/genética , Genómica/métodos , Humanos , Infestaciones por Piojos/parasitología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Simbiosis
19.
Genes (Basel) ; 14(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36672929

RESUMEN

The red imported fire ant Solenopsis invicta Buren (fire ant hereafter) is a global pest that inflicts billions of dollars in damages to the United States economy and poses a major threat on a global scale. Concerns with the broad-spectrum application of insecticides have facilitated the hunt for natural enemy-mediated controls. One of these, the virus Solenopsis invicta virus-3 (SINV-3 hereafter) is exceptionally virulent in laboratory settings. However, despite high mortality rates in the laboratory and documented widespread SINV-3 prevalence in the southern United States, the fire ant remains a major pest. To explore this paradox, we document the immune response elicited by the fire ant when infected with SINV-3. We sequence the fire ant transcriptome prior to and following infection with SINV-3, and identify and discuss in detail genes in immune response pathways differentially expressed following infection with SINV-3. This information provides insights into genes and pathways involved in the SINV-3 infection response in the fire ant and offers avenues to pursue, to suppress key immune response genes and force the fire ant to succumb to SINV-3 infection in the field.


Asunto(s)
Hormigas , Virus ARN , Animales , Virus ARN/genética , Hormigas/genética , Inmunidad Innata/genética , Expresión Génica
20.
Biomolecules ; 13(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37189337

RESUMEN

Background: The house cricket, Acheta domesticus, is one of the most farmed insects worldwide and the foundation of an emerging industry using insects as a sustainable food source. Edible insects present a promising alternative for protein production amid a plethora of reports on climate change and biodiversity loss largely driven by agriculture. As with other crops, genetic resources are needed to improve crickets for food and other applications. Methods: We present the first high quality annotated genome assembly of A. domesticus from long read data and scaffolded to chromosome level, providing information needed for genetic manipulation. Results: Gene groups related to immunity were annotated and will be useful for improving value to insect farmers. Metagenome scaffolds in the A. domesticus assembly, including Invertebrate Iridescent Virus 6 (IIV6), were submitted as host-associated sequences. We demonstrate both CRISPR/Cas9-mediated knock-in and knock-out of A. domesticus and discuss implications for the food, pharmaceutical, and other industries. RNAi was demonstrated to disrupt the function of the vermilion eye-color gene producing a useful white-eye biomarker phenotype. Conclusions: We are utilizing these data to develop technologies for downstream commercial applications, including more nutritious and disease-resistant crickets, as well as lines producing valuable bioproducts, such as vaccines and antibiotics.


Asunto(s)
Gryllidae , Animales , Gryllidae/genética , Gryllidae/metabolismo , Agricultura , Productos Agrícolas , Alérgenos/metabolismo , Ingeniería Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA