Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-20089524

RESUMEN

The COVID-19 pandemic has caused more than 300,000 reported deaths globally, of which more than 83,000 have been reported in the United States as of May 16, 2020. Public health interventions have had significant impacts in reducing transmission and in averting even more deaths. Nonetheless, in many jurisdictions (both at national and local levels) the decline of cases and fatalities after apparent epidemic peaks has not been rapid. Instead, the asymmetric decline in cases appears, in some cases, to be consistent with plateau- or shoulder-like phenomena. Here we explore a model of fatality-driven awareness in which individual protective measures increase with death rates. In this model, epidemic dynamics can be characterized by plateaus, shoulders, and lag-driven oscillations after exponential rises at the outset of disease dynamics. We also show that incorporating long-term awareness can avoid peak resurgence and accelerate epidemic decline. We suggest that awareness of epidemic severity is likely to play a critical role in disease dynamics, beyond that imposed by intervention-driven policies.

2.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-22278288

RESUMEN

Asymptomatic infections have hampered the ability to characterize and prevent the transmission of SARS-CoV-2 throughout the ongoing pandemic. Even though asymptomatic infections reduce severity at the individual level, they can make population-level outcomes worse if asymptomatic individuals--unaware they are infected--transmit more than symptomatic individuals. Using an epidemic model, we show that intermediate levels of asymptomatic infection lead to the highest levels of epidemic fatalities when the increase in asymptomatic transmission, due either to individual behavior or mitigation efforts, is strong. We generalize this result to include presymptomatic transmission, showing how intermediate levels of non-symptomatic transmission can lead to the highest levels of fatalities. Finally, we extend our framework to illustrate how the intersection of asymptomatic spread and immunity profiles determine epidemic trajectories, including population-level severity, of future variants.

3.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-20186395

RESUMEN

BackgroundPatient age is the most salient clinical indicator of risk from COVID-19. Age-specific distributions of known SARS-CoV-2 infections and COVID-19-related deaths are available for most countries. However, relatively little attention has been given to the age distributions of hospitalizations and serious healthcare interventions administered to COVID-19 patients. We examined these distributions in Ontario, Canada, in order to quantify the age-related impacts of COVID-19, and to identify potential risks should the healthcare system become overwhelmed with COVID-19 patients in the future. MethodsWe analysed known SARS-CoV-2 infection records from the integrated Public Health Information System (iPHIS) and the Toronto Public Health Coronavirus Rapid Entry System (CORES) between 23 January 2020 and 17 June 2020 (N = 30,546), and estimated the age distributions of hospitalizations, ICU admissions, intubations, and ventilations. We quantified the probability of hospitalization given known SARS-CoV-2 infection, and of survival given COVID-19-related hospitalization. ResultsThe distribution of COVID-19-related hospitalizations peaks with a wide plateau covering ages 54-90, whereas deaths are sharply concentrated in very old ages, with a maximum at age 90. The estimated probability of hospitalization given known SARS-CoV-2 infection reaches a maximum of 32.0% at age 75 (95% CI 27.5%-36.7%). The probability of survival given COVID-19-related hospitalization is uncertain for children (due to small sample size), and near 100% for adults younger than 40. After age 40, survival of hospitalized COVID-19 patients declines substantially; for example, a hospitalized 50-year-old patient has a 90.4% chance of surviving COVID-19 (95% CI 81.9%-95.7%). InterpretationConcerted efforts to control the spread of SARS-CoV-2 have kept prevalence of the virus low in the population of Ontario. The healthcare system has not been overstretched, yet the probability of survival given hospitalization for COVID-19 has been lower than is generally recognized for patients over 40. If prevalence of the virus were to increase and healthcare capacities were to be exceeded, survival of individuals in the broad age range requiring acute care would be expected to decrease, potentially expanding the distribution of COVID-19-related deaths toward younger ages.

4.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-20045815

RESUMEN

On January 20, 2020, the first COVID-19 case was confirmed in South Korea. After a rapid outbreak, the number of incident cases has been consistently decreasing since early March; this decrease has been widely attributed to its intensive testing. We report here on the likely role of social distancing in reducing transmission in South Korea. Our analysis suggests that transmission may still be persisting in some regions.

5.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-20033514

RESUMEN

The role of asymptomatic carriers in transmission poses challenges for control of the COVID-19 pandemic. Study of asymptomatic transmission and implications for surveillance and disease burden are ongoing, but there has been little study of the implications of asymp- tomatic transmission on dynamics of disease. We use a mathematical framework to evaluate expected effects of asymptomatic transmission on the basic reproduction number[R] 0 (i.e., the expected number of secondary cases generated by an average primary case in a fully sus- ceptible population) and the fraction of new secondary cases attributable to asymptomatic individuals. If the generation-interval distribution of asymptomatic transmission differs from that of symptomatic transmission, then estimates of the basic reproduction number which do not explicitly account for asymptomatic cases may be systematically biased. Specifically, if asymptomatic cases have a shorter generation interval than symptomatic cases,[R] 0 will be over-estimated, and if they have a longer generation interval,[R] 0 will be under-estimated. Estimates of the realized proportion of asymptomatic transmission during the exponential phase also depend on asymptomatic generation intervals. Our analysis shows that understanding the temporal course of asymptomatic transmission can be important for assessing the importance of this route of transmission, and for disease dynamics. This provides an additional motivation for investigating both the importance and relative duration of asymptomatic transmission.

6.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-22274139

RESUMEN

Asymptomatic and symptomatic SARS-CoV-2 infections can have different characteristic time scales of transmission. These time-scale differences can shape outbreak dynamics as well as bias population-level estimates of epidemic strength, speed, and controllability. For example, prior work focusing on the initial exponential growth phase of an outbreak found that larger time scales for asymptomatic vs. symptomatic transmission can lead to under-estimates of the basic reproduction number as inferred from epidemic case data. Building upon this work, we use a series of nonlinear epidemic models to explore how differences in asymptomatic and symptomatic transmission time scales can lead to changes in the realized proportion of asymptomatic transmission throughout an epidemic. First, we find that when asymptomatic transmission time scales are longer than symptomatic transmission time scales, then the effective proportion of asymptomatic transmission increases as total incidence decreases. Moreover, these time-scale-driven impacts on epidemic dynamics are enhanced when infection status is correlated between infector and infectee pairs (e.g., due to dose-dependent impacts on symptoms). Next we apply these findings to understand the impact of time-scale differences on populations with age-dependent assortative mixing and in which the probability of having a symptomatic infection increases with age. We show that if asymptomatic generation intervals are longer than corresponding symptomatic generation intervals, then correlations between age and symptoms lead to a decrease in the age of infection during periods of epidemic decline (whether due to susceptible depletion or intervention). Altogether, these results demonstrate the need to explore the role of time-scale differences in transmission dynamics alongside behavioural changes to explain outbreak features both at early stages (e.g., in estimating the basic reproduction number) and throughout an epidemic (e.g., in connecting shifts in the age of infection to periods of changing incidence).

7.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21266051

RESUMEN

Quantifying the temporal dynamics of infectiousness of individuals infected with SARS-CoV-2 is crucial for understanding the spread of the COVID-19 pandemic and for analyzing the effectiveness of different mitigation strategies. Many studies have tried to use data from the onset of symptoms of infector-infectee pairs to estimate the infectiousness profile of SARS-CoV-2. However, both statistical and epidemiological biases in the data could lead to an underestimation of the duration of infectiousness. We correct for these biases by curating data from the initial outbreak of the pandemic in China (when mitigation steps were still minimal), and find that the infectiousness profile is wider than previously thought. For example, our estimate for the proportion of transmissions occurring 14 days or more after infection is an order of magnitude higher - namely 19% (95% CI 10%-25%). The inferred generation interval distribution is sensitive to the definition of the period of unmitigated transmission, but estimates that rely on later periods are less reliable due to intervention effects. Nonetheless, the results are robust to other factors such as the model, the assumed growth rate and possible bias of the dataset. Knowing the unmitigated infectiousness profile of infected individuals affects estimates of the effectiveness of self-isolation and quarantine of contacts. The framework presented here can help design better quarantine policies in early stages of future epidemics using data from the initial stages of transmission.

8.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21256545

RESUMEN

Inferring the relative strength (i.e., the ratio of reproduction numbers, [R]var/[R]wt) and relative speed (i.e., the difference between growth rates, rvar -rwt) of new SARS-CoV-2 variants compared to their wild types is critical to predicting and controlling the course of the current pandemic. Multiple studies have estimated the relative strength of new variants from the observed relative speed, but they typically neglect the possibility that the new variants have different generation intervals (i.e., time between infection and transmission), which determines the relationship between relative strength and speed. Notably, the increasingly predominant B.1.1.7 variant may have a longer infectious period (and therefore, a longer generation interval) than prior dominant lineages. Here, we explore how differences in generation intervals between a new variant and the wild type affect the relationship between relative strength and speed. We use simulations to show how neglecting these differences can lead to biases in estimates of relative strength in practice and to illustrate how such biases can be assessed. Finally, we discuss implications for control: if new variants have longer generation intervals then speed-like interventions such as contact tracing become more effective, whereas strength-like interventions such as social distancing become less effective.

9.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-20019877

RESUMEN

A novel coronavirus (SARS-CoV-2) has recently emerged as a global threat. As the epidemic progresses, many disease modelers have focused on estimating the basic reproductive number[R] 0- the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modeling approaches and resulting estimates of[R] 0 vary widely, despite relying on similar data sources. Here, we present a novel statistical framework for comparing and combining different estimates of[R] 0 across a wide range of models by decomposing the basic reproductive number into three key quantities: the exponential growth rate r, the mean generation interval [Formula], and the generation-interval dispersion{kappa} . We then apply our framework to early estimates of[R] 0 for the SARS-CoV-2 outbreak. We show that many early[R] 0 estimates are overly confident. Our results emphasize the importance of propagating uncertainties in all components of[R] 0, including the shape of the generation-interval distribution, in efforts to estimate[R] 0 at the outset of an epidemic.

10.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21266068

RESUMEN

IntroductionGlobally, there have been more than 404 million cases of SARS-CoV-2, with 5.8 million confirmed deaths, as of February 2022. South Africa has experienced four waves of SARS-CoV-2 transmission, with the second, third, and fourth waves being driven by the Beta, Delta, and Omicron variants, respectively. A key question with the emergence of new variants is the extent to which they are able to reinfect those who have had a prior natural infection. RationaleWe developed two approaches to monitor routine epidemiological surveillance data to examine whether SARS-CoV-2 reinfection risk has changed through time in South Africa, in the context of the emergence of the Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. We analyze line list data on positive tests for SARS-CoV-2 with specimen receipt dates between 04 March 2020 and 31 January 2022, collected through South Africas National Notifiable Medical Conditions Surveillance System. Individuals having sequential positive tests at least 90 days apart were considered to have suspected reinfections. Our routine monitoring of reinfection risk included comparison of reinfection rates to the expectation under a null model (approach 1) and estimation of the time-varying hazards of infection and reinfection throughout the epidemic (approach 2) based on model-based reconstruction of the susceptible populations eligible for primary and second infections. Results105,323 suspected reinfections were identified among 2,942,248 individuals with laboratory-confirmed SARS-CoV-2 who had a positive test result at least 90 days prior to 31 January 2022. The number of reinfections observed through the end of the third wave in September 2021 was consistent with the null model of no change in reinfection risk (approach 1). Although increases in the hazard of primary infection were observed following the introduction of both the Beta and Delta variants, no corresponding increase was observed in the reinfection hazard (approach 2). Contrary to expectation, the estimated hazard ratio for reinfection versus primary infection was lower during waves driven by the Beta and Delta variants than for the first wave (relative hazard ratio for wave 2 versus wave 1: 0.71 (CI95: 0.60-0.85); for wave 3 versus wave 1: 0.54 (CI95: 0.45-0.64)). In contrast, the recent spread of the Omicron variant has been associated with an increase in reinfection hazard coefficient. The estimated hazard ratio for reinfection versus primary infection versus wave 1 was 1.75 (CI95: 1.48-2.10) for the period of Omicron emergence (01 November 2021 to 30 November 2021) and 1.70 (CI95: 1.44-2.04) for wave 4 versus wave 1. Individuals with identified reinfections since 01 November 2021 had experienced primary infections in all three prior waves, and an increase in third infections has been detected since mid-November 2021. Many individuals experiencing third infections had second infections during the third (Delta) wave that ended in September 2021, strongly suggesting that these infections resulted from immune evasion rather than waning immunity. ConclusionPopulation-level evidence suggests that the Omicron variant is associated with substantial ability to evade immunity from prior infection. In contrast, there is no population-wide epidemiological evidence of immune escape associated with the Beta or Delta variants. This finding has important implications for public health planning, particularly in countries like South Africa with high rates of immunity from prior infection. Further development of methods to track reinfection risk during pathogen emergence, including refinements to assess the impact of waning immunity, account for vaccine-derived protection, and monitor the risk of multiple reinfections will be an important tool for future pandemic preparedness.

11.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-22277186

RESUMEN

Estimating the differences in the incubation-period, serial-interval, and generation-interval distributions of SARS-CoV-2 variants is critical to understanding their transmission and control. However, the impact of epidemic dynamics is often neglected in estimating the timing of infection and transmission--for example, when an epidemic is growing exponentially, a cohort of infected individuals who developed symptoms at the same time are more likely to have been infected recently. Here, we re-analyze incubation-period and serial-interval data describing transmissions of the Delta and Omicron variants from the Netherlands at the end of December 2021. Previous analysis of the same data set reported shorter mean observed incubation period (3.2 days vs 4.4 days) and serial interval (3.5 days vs 4.1 days) for the Omicron variant, but the number of infections caused by the Delta variant decreased during this period as the number of Omicron infections increased. When we account for growth-rate differences of two variants during the study period, we estimate similar mean incubation periods (3.8-4.5 days) for both variants but a shorter mean generation interval for the Omicron variant (3.0 days; 95% CI: 2.7-3.2 days) than for the Delta variant (3.8 days; 95% CI: 3.7-4.0 days). We further note that the differences in estimated generation intervals may be driven by the "network effect"--higher effective transmissibility of the Omicron variant can cause faster susceptible depletion among contact networks, which in turn prevents late transmission (therefore shortening realized generation intervals). Using up-to-date generation-interval distributions is critical to accurately estimating the reproduction advantage of the Omicron variant. SignificanceRecent studies suggest that individuals infected with the Omicron variant develop symptoms earlier (shorter incubation period) and transmit faster (shorter generation interval) than those infected with the Delta variant. However, these studies typically neglect population-level effects: when an epidemic is growing, a greater proportion of current cases were infected recently, biasing us toward observing faster transmission events. Accounting for this dynamical bias, we find that Omicron infections from the Netherlands at the end of December 2021 had similar incubation periods, but shorter generation intervals, compared to Delta infections from the same period. Shorter generation intervals of the Omicron variant might be due to its higher effective reproduction number, which can cause faster local susceptible depletion around the contact network.

12.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-20049767

RESUMEN

The COVID-19 pandemic has precipitated a global crisis, with more than 690,000 confirmed cases and more than 33,000 confirmed deaths globally as of March 30, 2020 [1-4]. At present two central public health control strategies have emerged: mitigation and suppression (e.g, [5]). Both strategies focus on reducing new infections by reducing interactions (and both raise questions of sustainability and long-term tactics). Complementary to those approaches, here we develop and analyze an epidemiological intervention model that leverages serological tests [6, 7] to identify and deploy recovered individuals as focal points for sustaining safer interactions via interaction substitution, i.e., to develop what we term shield immunity at the population scale. Recovered individuals, in the present context, represent those who have developed protective, antibodies to SARS-CoV-2 and are no longer shedding virus [8]. The objective of a shield immunity strategy is to help sustain the interactions necessary for the functioning of essential goods and services (including but not limited to tending to the elderly [9], hospital care, schools, and food supply) while decreasing the probability of transmission during such essential interactions. We show that a shield immunity approach may significantly reduce the length and reduce the overall burden of an outbreak, and can work synergistically with social distancing. The present model highlights the value of serological testing as part of intervention strategies, in addition to its well recognized roles in estimating prevalence [10, 11] and in the potential development of plasma-based therapies [12-15].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA