RESUMEN
There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.
Asunto(s)
Pruebas Genéticas , Enfermedades Raras , Secuenciación Completa del Genoma , Humanos , Masculino , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Femenino , Niño , Pruebas Genéticas/métodos , Preescolar , Adolescente , Adulto , Lactante , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/diagnósticoRESUMEN
OBJECTIVE: Recurrent deletions involving 17q12 are associated with a variety of clinical phenotypes, including congenital abnormalities of the kidney and urinary tract (CAKUT), maturity onset diabetes of the young, type 5, and neurodevelopmental disorders. Structural and/or functional renal disease is the most common phenotypic feature, although the prenatal renal phenotypes and the postnatal correlates have not been well characterized. METHOD: We reviewed pre- and postnatal medical records of 26 cases with prenatally or postnatally identified 17q12/HNF1B microdeletions (by chromosomal microarray or targeted gene sequencing), obtained through a multicenter collaboration. We specifically evaluated 17 of these cases (65%) with reported prenatal renal ultrasound findings. RESULTS: Heterogeneous prenatal renal phenotypes were noted, most commonly renal cysts (41%, n = 7/17) and echogenic kidneys (41%), although nonspecific dysplasia, enlarged kidneys, hydronephrosis, pelvic kidney with hydroureter, and lower urinary tract obstruction were also reported. Postnatally, most individuals developed renal cysts (73%, 11/15 live births), and there were no cases of end-stage renal disease during childhood or the follow-up period. CONCLUSION: Our findings demonstrate that copy number variant analysis to assess for 17q12 microdeletion should be considered for a variety of prenatally detected renal anomalies. It is important to distinguish 17q12 microdeletion from other etiologies of CAKUT as the prognosis for renal function and presence of associated findings are distinct and may influence pregnancy and postnatal management.
Asunto(s)
Enfermedades Renales Quísticas , Enfermedades Renales , Anomalías Urogenitales , Reflujo Vesicoureteral , Embarazo , Femenino , Humanos , Deleción Cromosómica , Riñón/diagnóstico por imagen , Riñón/anomalías , Enfermedades Renales/congénito , Fenotipo , Enfermedades Renales Quísticas/diagnóstico por imagen , Enfermedades Renales Quísticas/genética , Factor Nuclear 1-beta del Hepatocito/genética , Estudios Multicéntricos como AsuntoRESUMEN
The X-linked GRIA3 gene encodes the GLUA3 subunit of AMPA-type glutamate receptors. Pathogenic variants in this gene were previously reported in neurodevelopmental diseases, mostly in male patients but rarely in females. Here we report a de novo pathogenic missense variant in GRIA3 (c.1979G>C; p. R660T) identified in a 1-year-old female patient with severe epilepsy and global developmental delay. When exogenously expressed in human embryonic kidney (HEK) cells, GLUA3_R660T showed slower desensitization and deactivation kinetics compared to wildtype (wt) GLUA3 receptors. Substantial non-desensitized currents were observed with the mutant but not for wt GLUA3 with prolonged exposure to glutamate. When co-expressed with GLUA2, the decay kinetics were similarly slowed in GLUA2/A3_R660T with non-desensitized steady state currents. In cultured cerebellar granule neurons, miniature excitatory postsynaptic currents (mEPSCs) were significantly slower in R660T transfected cells than those expressing wt GLUA3. When overexpressed in hippocampal CA1 neurons by in utero electroporation, the evoked EPSCs and mEPSCs were slower in neurons expressing R660T mutant compared to those expressing wt GLUA3. Therefore our study provides functional evidence that a gain of function (GoF) variant in GRIA3 may cause epileptic encephalopathy and global developmental delay in a female subject by enhancing synaptic transmission.
Asunto(s)
Proteínas del Huevo/genética , Mutación con Ganancia de Función , Proteínas de la Membrana/genética , Neuronas/metabolismo , Receptores AMPA/genética , Espasmos Infantiles/genética , Secuencia de Aminoácidos , Animales , Cerebelo/metabolismo , Cerebelo/patología , Preescolar , Proteínas del Huevo/metabolismo , Femenino , Expresión Génica , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos ICR , Modelos Moleculares , Neuronas/patología , Cultivo Primario de Células , Conformación Proteica , Receptores AMPA/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patologíaRESUMEN
In two independent ongoing next-generation sequencing projects for individuals with holoprosencephaly and individuals with disorders of sex development, and through international research collaboration, we identified twelve individuals with de novo loss-of-function (LoF) variants in protein phosphatase 1, regulatory subunit 12a (PPP1R12A), an important developmental gene involved in cell migration, adhesion, and morphogenesis. This gene has not been previously reported in association with human disease, and it has intolerance to LoF as illustrated by a very low observed-to-expected ratio of LoF variants in gnomAD. Of the twelve individuals, midline brain malformations were found in five, urogenital anomalies in nine, and a combination of both phenotypes in two. Other congenital anomalies identified included omphalocele, jejunal, and ileal atresia with aberrant mesenteric blood supply, and syndactyly. Six individuals had stop gain variants, five had a deletion or duplication resulting in a frameshift, and one had a canonical splice acceptor site loss. Murine and human in situ hybridization and immunostaining revealed PPP1R12A expression in the prosencephalic neural folds and protein localization in the lower urinary tract at critical periods for forebrain division and urogenital development. Based on these clinical and molecular findings, we propose the association of PPP1R12A pathogenic variants with a congenital malformations syndrome affecting the embryogenesis of the brain and genitourinary systems and including disorders of sex development.
Asunto(s)
Anomalías Múltiples/patología , Trastornos del Desarrollo Sexual/patología , Holoprosencefalia/patología , Mutación , Fosfatasa de Miosina de Cadena Ligera/genética , Anomalías Urogenitales/patología , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Trastornos del Desarrollo Sexual/genética , Femenino , Edad Gestacional , Holoprosencefalia/genética , Humanos , Masculino , Fenotipo , Embarazo , Anomalías Urogenitales/genéticaRESUMEN
PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.
Asunto(s)
Braquidactilia , Enanismo , Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Enanismo/genética , Obesidad/genética , Fenotipo , Proteína-Arginina N-Metiltransferasas/genéticaRESUMEN
Pre-mRNA splicing factors are crucial in regulating transcript diversity, by removing introns from eukaryotic transcripts, an essential step in gene expression. Splicing of pre-mRNA is catalyzed by spliceosomes. CWC27 is a cyclophilin associated with spliceosome, in which genetic defects of its components have been linked to spliceosomopathies with clinical phenotypes including skeletal developmental defects, retinitis pigmentosa (RP), short stature, skeletal anomalies, and neurological disorders. We report two siblings (male and female) of Mexican descent with a novel homozygous frameshift variant in CWC27 and aim to highlight the cardinal features among the previously described 12 cases as well as expand the currently recognized phenotypic spectrum. Both siblings presented with a range of ocular and extraocular manifestations including novel features such as solitary kidney and tarsal coalition in the male sibling, together with gait abnormalities, and Hashimoto's thyroiditis in the female sibling. Finally, we highlight ectodermal involvement including sparse scalp hair, eyebrows and lashes, pigmentary differences, nail dysplasia, and dental anomalies as a core phenotype associated with the CWC27 spliceosomopathy.
Asunto(s)
Precursores del ARN , Retinitis Pigmentosa , Femenino , Humanos , Masculino , Ciclofilinas/genética , Ciclofilinas/metabolismo , Isomerasa de Peptidilprolil/genética , Retinitis Pigmentosa/genética , Precursores del ARN/genética , Empalme del ARN/genética , Empalmosomas/genética , México/etnologíaRESUMEN
Increasing use of unbiased genomic sequencing in critically ill infants can expand understanding of rare diseases such as Kabuki syndrome (KS). Infants diagnosed with KS through genome-wide sequencing performed during the initial hospitalization underwent retrospective review of medical records. Human phenotype ontology terms used in genomic analysis were aggregated and analyzed. Clinicians were surveyed regarding changes in management and other care changes. Fifteen infants met inclusion criteria. KS was not suspected prior to genomic sequencing. Variants were classified as Pathogenic (n = 10) or Likely Pathogenic (n = 5) by American College of Medical Genetics and Genomics Guidelines. Fourteen variants were de novo (KMT2D, n = 12, KDM6A, n = 2). One infant inherited a likely pathogenic variant in KMT2D from an affected father. Frequent findings involved cardiovascular (14/15) and renal (7/15) systems, with palatal defects also identified (6/15). Three infants had non-immune hydrops. No minor anomalies were universally documented; ear anomalies, micrognathia, redundant nuchal skin, and hypoplastic nails were common. Changes in management were reported in 14 infants. Early use of unbiased genome-wide sequencing enabled a molecular diagnosis prior to clinical recognition including infants with atypical or rarely reported features of KS while also expanding the phenotypic spectrum of this rare disorder.
Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Enfermedades Vestibulares , Embarazo , Femenino , Humanos , Lactante , Anomalías Múltiples/genética , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedades Vestibulares/genética , Fenotipo , Histona Demetilasas/genéticaRESUMEN
Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.
Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Factores de Transcripción/genética , Proteínas de Ciclo Celular/genética , Fenotipo , Mutación , Genómica , Estudios de Asociación Genética , Factores de Elongación Transcripcional/genética , Histona Desacetilasas/genética , Proteínas Represoras/genéticaRESUMEN
Polyglutamine expansions in the transcriptional co-repressor Atrophin-1, encoded by ATN1, cause the neurodegenerative condition dentatorubral-pallidoluysian atrophy (DRPLA) via a proposed novel toxic gain of function. We present detailed phenotypic information on eight unrelated individuals who have de novo missense and insertion variants within a conserved 16-amino-acid "HX repeat" motif of ATN1. Each of the affected individuals has severe cognitive impairment and hypotonia, a recognizable facial gestalt, and variable congenital anomalies. However, they lack the progressive symptoms typical of DRPLA neurodegeneration. To distinguish this subset of affected individuals from the DRPLA diagnosis, we suggest using the term CHEDDA (congenital hypotonia, epilepsy, developmental delay, digit abnormalities) to classify the condition. CHEDDA-related variants alter the particular structural features of the HX repeat motif, suggesting that CHEDDA results from perturbation of the structural and functional integrity of the HX repeat. We found several non-homologous human genes containing similar motifs of eight to 10 HX repeat sequences, including RERE, where disruptive variants in this motif have also been linked to a separate condition that causes neurocognitive and congenital anomalies. These findings suggest that perturbation of the HX motif might explain other Mendelian human conditions.
Asunto(s)
Secuencias de Aminoácidos/genética , Variación Genética , Proteínas del Tejido Nervioso/genética , Trastornos Neurocognitivos/etiología , Secuencias Repetitivas de Ácidos Nucleicos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Trastornos Neurocognitivos/clasificación , Trastornos Neurocognitivos/patología , Fenotipo , Pronóstico , SíndromeRESUMEN
Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.
Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , Variaciones en el Número de Copia de ADN , Diafragma , Hernias Diafragmáticas Congénitas/genética , RatonesRESUMEN
Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.
Asunto(s)
Anomalías Múltiples/genética , Aciltransferasas/genética , Artrogriposis/genética , Ataxia Cerebelosa/genética , Epilepsia Generalizada/genética , Línea Celular , Niño , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Linaje , Convulsiones/genética , Síndrome , Secuenciación del Exoma/métodosRESUMEN
Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non-LoF variants. This study identifies genotype-phenotype correlations as well as race-facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long-term outcomes in individuals with WSS.
Asunto(s)
Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Hipertricosis/congénito , Discapacidad Intelectual/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Población Negra/genética , Estreñimiento/epidemiología , Estreñimiento/genética , Estreñimiento/patología , Insuficiencia de Crecimiento/epidemiología , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Estudios de Asociación Genética , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/patología , Humanos , Hipertricosis/epidemiología , Hipertricosis/genética , Hipertricosis/patología , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Estudios Retrospectivos , Población Blanca/genéticaRESUMEN
Up to 350 million people worldwide suffer from a rare disease, and while the individual diseases are rare, in aggregate they represent a substantial challenge to global health systems. The majority of rare disorders are genetic in origin, with children under the age of five disproportionately affected. As these conditions are difficult to identify clinically, genetic and genomic testing have become the backbone of diagnostic testing in this population. In the last 10 years, next-generation sequencing technologies have enabled testing of multiple disease genes simultaneously, ranging from targeted gene panels to exome sequencing (ES) and genome sequencing (GS). GS is quickly becoming a practical first-tier test, as cost decreases and performance improves. A growing number of studies demonstrate that GS can detect an unparalleled range of pathogenic abnormalities in a single laboratory workflow. GS has the potential to deliver unbiased, rapid and accurate molecular diagnoses to patients across diverse clinical indications and complex presentations. In this paper, we discuss clinical indications for testing and historical testing paradigms. Evidence supporting GS as a diagnostic tool is supported by superior genomic coverage, types of pathogenic variants detected, simpler laboratory workflow enabling shorter turnaround times, diagnostic and reanalysis yield, and impact on healthcare.
Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Enfermedades Raras/genética , Niño , Exoma/genética , Enfermedades Genéticas Congénitas/diagnóstico , Genoma Humano/genética , Humanos , Lactante , Enfermedades Raras/diagnóstico , Secuenciación del Exoma/tendencias , Secuenciación Completa del GenomaRESUMEN
OBJECTIVES: We hypothesized that: (1) fetal frontal horn (FH) morphology and their proximity to the cavum septi pellucidi (CSP) can assist in suspecting complete agenesis of the corpus callosum (cACC) and partial agenesis of the corpus callosum (pACC) earlier than known indirect ultrasound (US) findings; (2) FHs assist in differentiating a true CSP from a pseudocavum; and (3) magnetic resonance imaging (MRI) is useful in learning FH morphology and pseudocavum etiology. METHODS: Thirty-two patients with cACC and 9 with pACC were identified on an Institutional Review Board-approved retrospective review. Of the 41 cases, 40 had prenatal US, and 21 had prenatal MRI; 17 had follow-up neonatal US, and 14 had follow-up neonatal MRI. Variables evaluated retrospectively were the presence of a CSP or a pseudocavum, ventricle size and shape, and FH shape (comma, trident, parallel, golf club, enlarged, or fused). Displacement between the inferior edge of the FH and the midline or cavum/pseudocavum was measured. RESULTS: Fetal FHs had an abnormal shape in 77% ≤20 weeks' gestation, 86% ≤24 weeks, and 90% >24 weeks. Frontal horns were laterally displaced greater than 2 mm in 85% ≤20 weeks, 91% ≤24 weeks, and 95% >24 weeks. The CSP was absent in 100% of cACC cases and 78% of pACC cases, and a pseudocavum was present in 88% of cACC cases and 78% of pACC cases across gestation. Magnetic resonance imaging confirmed US pseudocavums to be focal interhemispheric fluid or an elevated/dilated third ventricle. CONCLUSIONS: Frontal horns assist in assessing ACC ≤24 weeks and throughout gestation. Pseudocavums, often simulating CSPs, are common in ACC. Frontal horn lateral displacement and abnormal morphology, recognized by MRI correlations, are helpful in differentiating a pseudocavum from a true CSP. A normal CSP should not be cleared on screening US unless normally shaped FHs are seen directly adjacent to it.
Asunto(s)
Cuerpo Calloso , Ultrasonografía Prenatal , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Femenino , Feto , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Embarazo , Estudios Retrospectivos , Tabique Pelúcido/diagnóstico por imagenRESUMEN
SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.
Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , Mutación , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Animales , Niño , Preescolar , Codón de Terminación , Modelos Animales de Enfermedad , Femenino , Reordenamiento Génico , Estudios de Asociación Genética , Humanos , Masculino , Mutación Missense , Polimorfismo de Nucleótido SimpleRESUMEN
Curry-Jones syndrome (CJS) is a multisystem disorder characterized by patchy skin lesions, polysyndactyly, diverse cerebral malformations, unicoronal craniosynostosis, iris colobomas, microphthalmia, and intestinal malrotation with myofibromas or hamartomas. Cerebellar medulloblastoma has been described in a single affected individual; in another, biopsy of skin lesions showed features of trichoblastoma. The combination of asymmetric clinical features, patchy skin manifestations, and neoplastic association previously led to the suggestion that this could be a mosaic condition, possibly involving hedgehog (Hh) signaling. Here, we show that CJS is caused by recurrent somatic mosaicism for a nonsynonymous variant in SMO (c.1234C>T [p.Leu412Phe]), encoding smoothened (SMO), a G-protein-coupled receptor that transduces Hh signaling. We identified eight mutation-positive individuals (two of whom had not been reported previously) with highly similar phenotypes and demonstrated varying amounts of the mutant allele in different tissues. We present detailed findings from brain MRI in three mutation-positive individuals. Somatic SMO mutations that result in constitutive activation have been described in several tumors, including medulloblastoma, ameloblastoma, and basal cell carcinoma. Strikingly, the most common of these mutations is the identical nonsynonymous variant encoding p.Leu412Phe. Furthermore, this substitution has been shown to activate SMO in the absence of Hh signaling, providing an explanation for tumor development in CJS. This raises therapeutic possibilities for using recently generated Hh-pathway inhibitors. In summary, our work uncovers the major genetic cause of CJS and illustrates strategies for gene discovery in the context of low-level tissue-specific somatic mosaicism.
Asunto(s)
Anomalías Craneofaciales/etiología , Intestinos/anomalías , Mutación/genética , Anomalías Cutáneas/etiología , Receptor Smoothened/genética , Sindactilia/etiología , Preescolar , Anomalías Craneofaciales/patología , Femenino , Humanos , Lactante , Recién Nacido , Intestinos/patología , Masculino , Transducción de Señal , Anomalías Cutáneas/patología , Sindactilia/patologíaRESUMEN
PURPOSE: Haploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling. METHODS: We report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency. RESULTS: The clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination. CONCLUSION: The consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.
Asunto(s)
Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Neurodesarrollo/genética , Problema de Conducta , Adolescente , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Deleción Cromosómica , Proteínas de Unión al ADN/genética , Genoma Humano/genética , Haploinsuficiencia/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/fisiopatología , Trastornos del Desarrollo del Lenguaje/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Proteínas Nucleares/genética , Fenotipo , Proteínas/genética , Secuenciación del ExomaRESUMEN
Hypotrichosis-lymphedema-telangiectasia syndrome (HLTS) is a rare disorder caused by autosomal recessive and autosomal dominant mutations in SOX18. This gene encodes a transcription factor involved in the regulation and development of the human vasculature, lymphatic, and integumentary systems. Individuals with HLTS develop varying degrees of hypotrichosis, lymphedema, and telangiectasias. Other complications, such as renal failure and aortic dilation, have also been observed. Here, we report a neonate with a novel mutation in SOX18 (c.541C>T; p.Gln181stop) presenting with cardinal features of HLTS in addition to unique findings of severe chylothorax and relentless pulmonary hypertension that culminated in death. The purpose of this report is to summarize what is known about this evolving genetic syndrome and to speculate as to how mutations in SOX18 might produce the phenotype.
Asunto(s)
Genes Dominantes , Hipotricosis/diagnóstico , Hipotricosis/genética , Linfedema/diagnóstico , Linfedema/genética , Mutación , Factores de Transcripción SOXF/genética , Telangiectasia/diagnóstico , Telangiectasia/genética , Alelos , Exones , Resultado Fatal , Genotipo , Humanos , Recién Nacido , FenotipoRESUMEN
PURPOSE: Nail-Patella syndrome is a dominantly inherited genetic disorder characterized by abnormalities of the nails, knees, elbows, and pelvis. Nail abnormalities are the most constant feature of Nail-Patella syndrome. Pathogenic mutations in a single gene, LMX1B, a mesenchymal determinant of dorsal-ventral patterning, explain approximately 95% of Nail-Patella syndrome cases. However, 5% of cases remain unexplained. METHODS: Here, we present exome sequencing and analysis of four generations of a family with a dominantly inherited Nail-Patella-like disorder (nail dysplasia with some features of Nail-Patella syndrome) who tested negative for LMX1B mutation. RESULTS: We identify a loss-of-function mutation in WIF1 (NM_007191 p.W15*), which is involved in mesoderm segmentation, as the suspected cause of the Nail-Patella-like disorder observed in this family. CONCLUSIONS: Mutation of WIF1 is a potential novel cause of a Nail-Patella-like disorder. Testing of additional patients negative for LMX1B mutation is needed to confirm this finding and further clarify the phenotype.Genet Med advance online publication 06 April 2017.