Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(6): 1728-1745, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050346

RESUMEN

Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.


Asunto(s)
Ecosistema , Grano Comestible , Grano Comestible/genética , Perfilación de la Expresión Génica , Transcriptoma , Estrés Fisiológico/genética
2.
Plant Physiol ; 194(3): 1358-1369, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37847095

RESUMEN

The complexity of environmental factors affecting crops in the field is gradually increasing due to climate change-associated weather events, such as droughts or floods combined with heat waves, coupled with the accumulation of different environmental and agricultural pollutants. The impact of multiple stress conditions on plants was recently termed "multifactorial stress combination" (MFSC) and defined as the occurrence of 3 or more stressors that impact plants simultaneously or sequentially. We recently reported that with the increased number and complexity of different MFSC stressors, the growth and survival of Arabidopsis (Arabidopsis thaliana) seedlings declines, even if the level of each individual stress is low enough to have no significant effect on plants. However, whether MFSC would impact commercial crop cultivars is largely unknown. Here, we reveal that a MFSC of 5 different low-level abiotic stresses (salinity, heat, the herbicide paraquat, phosphorus deficiency, and the heavy metal cadmium), applied in an increasing level of complexity, has a significant negative impact on the growth and biomass of a commercial rice (Oryza sativa) cultivar and a maize (Zea mays) hybrid. Proteomics, element content, and mixOmics analyses of MFSC in rice identified proteins that correlate with the impact of MFSC on rice seedlings, and analysis of 42 different rice genotypes subjected to MFSC revealed substantial genetic variability in responses to this unique state of stress combination. Taken together, our findings reveal that the impacts of MFSC on 2 different crop species are severe and that MFSC may substantially affect agricultural productivity.


Asunto(s)
Arabidopsis , Oryza , Oryza/genética , Zea mays/genética , Agricultura , Biomasa
3.
Artículo en Inglés | MEDLINE | ID: mdl-38868940

RESUMEN

BACKGROUND: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

4.
Plant J ; 116(4): 1064-1080, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37006191

RESUMEN

Global warming and climate change are driving an alarming increase in the frequency and intensity of extreme climate events, such as droughts, heat waves, and their combination, inflicting heavy losses to agricultural production. Recent studies revealed that the transcriptomic responses of different crops to water deficit (WD) or heat stress (HS) are very different from that to a combination of WD + HS. In addition, it was found that the effects of WD, HS, and WD + HS are significantly more devastating when these stresses occur during the reproductive growth phase of crops, compared to vegetative growth. As the molecular responses of different reproductive and vegetative tissues of plants to WD, HS, or WD + HS could be different from each other and these differences could impact many current and future attempts to enhance the resilience of crops to climate change through breeding and/or engineering, we conducted a transcriptomic analysis of different soybean (Glycine max) tissues to WD, HS, and WD + HS. Here we present a reference transcriptomic dataset that includes the response of soybean leaf, pod, anther, stigma, ovary, and sepal to WD, HS, and WD + HS conditions. Mining this dataset for the expression pattern of different stress response transcripts revealed that each tissue had a unique transcriptomic response to each of the different stress conditions. This finding is important as it suggests that enhancing the overall resilience of crops to climate change could require a coordinated approach that simultaneously alters the expression of different groups of transcripts in different tissues in a stress-specific manner.


Asunto(s)
Transcriptoma , Agua , Agua/metabolismo , Glycine max/fisiología , Fitomejoramiento , Respuesta al Choque Térmico/genética , Deshidratación , Productos Agrícolas/metabolismo , Sequías , Estrés Fisiológico
5.
Hum Mol Genet ; 31(6): 985-998, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34652429

RESUMEN

Nuclear DNA viruses simultaneously access cellular factors that aid their life cycle while evading inhibitory factors by localizing to distinct nuclear sites. Adeno-associated viruses (AAVs), which are Dependoviruses in the family Parvovirinae, are non-enveloped icosahedral viruses, which have been developed as recombinant AAV vectors to express transgenes. AAV2 expression and replication occur in nuclear viral replication centers (VRCs), which relies on cellular replication machinery as well as coinfection by helper viruses such as adenoviruses or herpesviruses, or exogenous DNA damage to host cells. AAV2 infection induces a complex cellular DNA damage response (DDR), in response to either viral DNA or viral proteins expressed in the host nucleus during infection, where VRCs co-localized with DDR proteins. We have previously developed a modified iteration of a viral chromosome conformation capture (V3C-seq) assay to show that the autonomous parvovirus minute virus of mice localizes to cellular sites of DNA damage to establish and amplify its replication. Similar V3C-seq assays to map AAV2 show that the AAV2 genome co-localized with cellular sites of DNA damage under both non-replicating and replicating conditions. The AAV2 non-structural protein Rep 68/78, also localized to cellular DDR sites during both non-replicating and replicating infections, and also when ectopically expressed. Ectopically expressed Rep could be efficiently re-localized to DDR sites induced by micro-irradiation. Recombinant AAV2 gene therapy vector genomes derived from AAV2 localized to sites of cellular DNA damage to a lesser degree, suggesting that the inverted terminal repeat origins of replication were insufficient for targeting.


Asunto(s)
Proteínas de Unión al ADN , Dependovirus , Animales , Daño del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Dependovirus/genética , Dependovirus/metabolismo , Ratones , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Plant Physiol ; 193(3): 2215-2231, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37534775

RESUMEN

Waterlogging stress (WLS) negatively impacts the growth and yield of crops resulting in heavy losses to agricultural production. Previous studies have revealed that WLS induces a systemic response in shoots that is partially dependent on the plant hormones ethylene and abscisic acid. However, the role of rapid cell-to-cell signaling pathways, such as the reactive oxygen species (ROS) and calcium waves, in systemic responses of plants to WLS is unknown at present. Here, we reveal that an abrupt WLS treatment of Arabidopsis (Arabidopsis thaliana) plants growing in peat moss triggers systemic ROS and calcium wave responses and that the WLS-triggered ROS wave response of Arabidopsis is dependent on the ROS-generating RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), calcium-permeable channels GLUTAMATE-LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6), and aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (PIP2;1) proteins. We further show that WLS is accompanied by a rapid systemic transcriptomic response that is evident as early as 10 min following waterlogging initiation, includes many hypoxia-response transcripts, and is partially dependent on RBOHD. Interestingly, the abrupt WLS of Arabidopsis resulted in the triggering of a rapid hydraulic wave response and the transient opening of stomata on leaves. In addition, it induced in plants a heightened state of tolerance to a subsequent submergence stress. Taken together, our findings reveal that the initiation of WLS in plants is accompanied by rapid systemic physiological and transcriptomic responses that involve the ROS, calcium, and hydraulic waves, as well as the induction of hypoxia acclimation mechanisms in systemic tissues.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Plantas/metabolismo , Hipoxia , Regulación de la Expresión Génica de las Plantas
7.
Plant Physiol ; 192(2): 753-766, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36810691

RESUMEN

Climate change is causing an increase in the frequency and intensity of droughts, heat waves, and their combinations, diminishing agricultural productivity and destabilizing societies worldwide. We recently reported that during a combination of water deficit (WD) and heat stress (HS), stomata on leaves of soybean (Glycine max) plants are closed, while stomata on flowers are open. This unique stomatal response was accompanied by differential transpiration (higher in flowers, while lower in leaves) that cooled flowers during a combination of WD + HS. Here, we reveal that developing pods of soybean plants subjected to a combination of WD + HS use a similar acclimation strategy of differential transpiration to reduce internal pod temperature by approximately 4 °C. We further show that enhanced expression of transcripts involved in abscisic acid degradation accompanies this response and that preventing pod transpiration by sealing stomata causes a significant increase in internal pod temperature. Using an RNA-Seq analysis of pods developing on plants subjected to WD + HS, we also show that the response of pods to WD, HS, or WD + HS is distinct from that of leaves or flowers. Interestingly, we report that although the number of flowers, pods, and seeds per plant decreases under conditions of WD + HS, the seed mass of plants subjected to WD + HS increases compared to plants subjected to HS, and the number of seeds with suppressed/aborted development is lower in WD + HS compared to HS. Taken together, our findings reveal that differential transpiration occurs in pods of soybean plants subjected to WD + HS and that this process limits heat-induced damage to seed production.


Asunto(s)
Glycine max , Hojas de la Planta , Glycine max/metabolismo , Hojas de la Planta/metabolismo , Flores/genética , Flores/metabolismo , Plantas/metabolismo , Semillas/metabolismo , Agua/metabolismo , Deshidratación/metabolismo , Transpiración de Plantas/fisiología
8.
Plant Dis ; 108(2): 359-364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37578367

RESUMEN

The prospect of incorporating pennycress as an oilseed cover crop in the Midwest's corn-soybean rotation system has drawn researcher and farmer attention. The inclusion of pennycress will be beneficial as it provides an excellent soil cover to reduce soil erosion and nutrient leaching while serving as an additional source for oilseed production and income. However, pennycress is an alternative host for soybean cyst nematode (SCN), which is a major biological threat to soybean that needs to be addressed for sustainable pennycress adoption into our current production systems. To develop a standardized SCN resistance screening strategy in pennycress, we tested and optimized five parameters: (i) germination stimulants, (ii) inoculation timing, (iii) inoculation rate, (iv) experimental incubation time, and (v) susceptible checks. The standardized SCN resistance screening protocol includes the following: (i) treating pennycress seeds with gibberellic acid for 24 h, (ii) transplanting seedlings 12 to 15 days after initiating germination and inoculating 10 to 12 days after transplantation, (iii) inoculating at a rate of 1,500 eggs/100 cc soil (1,500 eggs per plant), (iv) processing roots at 30 days after inoculation, and (v) using susceptible pennycress accession Ames 32869 to calculate the female index. The standardized protocol was used to quantify the response of a diverse set of pennycress accessions for response against SCN HG type 1.2.5.7 and HG type 7. While there were no highly resistant pennycress lines identified, 15 were rated as moderately resistant to HG type 1.2.5.7, and eight were rated moderately resistant to HG type 7. The resistant lines identified in this study could be utilized to develop SCN-resistant pennycress cultivars. The study also opens a new avenue for research to understand SCN-pennycress interactions through molecular and genomic studies. This knowledge could aid in the successful inclusion of pennycress as a beneficial cover/oilseed crop in the United States Midwest.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Quistes , Nematodos , Animales , Glycine max , Suelo , Semillas
9.
BMC Genomics ; 24(1): 107, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899307

RESUMEN

BACKGROUND: The advancement of sequencing technologies today has made a plethora of whole-genome re-sequenced (WGRS) data publicly available. However, research utilizing the WGRS data without further configuration is nearly impossible. To solve this problem, our research group has developed an interactive Allele Catalog Tool to enable researchers to explore the coding region allelic variation present in over 1,000 re-sequenced accessions each for soybean, Arabidopsis, and maize. RESULTS: The Allele Catalog Tool was designed originally with soybean genomic data and resources. The Allele Catalog datasets were generated using our variant calling pipeline (SnakyVC) and the Allele Catalog pipeline (AlleleCatalog). The variant calling pipeline is developed to parallelly process raw sequencing reads to generate the Variant Call Format (VCF) files, and the Allele Catalog pipeline takes VCF files to perform imputations, functional effect predictions, and assemble alleles for each gene to generate curated Allele Catalog datasets. Both pipelines were utilized to generate the data panels (VCF files and Allele Catalog files) in which the accessions of the WGRS datasets were collected from various sources, currently representing over 1,000 diverse accessions for soybean, Arabidopsis, and maize individually. The main features of the Allele Catalog Tool include data query, visualization of results, categorical filtering, and download functions. Queries are performed from user input, and results are a tabular format of summary results by categorical description and genotype results of the alleles for each gene. The categorical information is specific to each species; additionally, available detailed meta-information is provided in modal popups. The genotypic information contains the variant positions, reference or alternate genotypes, the functional effect classes, and the amino-acid changes of each accession. Besides that, the results can also be downloaded for other research purposes. CONCLUSIONS: The Allele Catalog Tool is a web-based tool that currently supports three species: soybean, Arabidopsis, and maize. The Soybean Allele Catalog Tool is hosted on the SoyKB website ( https://soykb.org/SoybeanAlleleCatalogTool/ ), while the Allele Catalog Tool for Arabidopsis and maize is hosted on the KBCommons website ( https://kbcommons.org/system/tools/AlleleCatalogTool/Zmays and https://kbcommons.org/system/tools/AlleleCatalogTool/Athaliana ). Researchers can use this tool to connect variant alleles of genes with meta-information of species.


Asunto(s)
Alelos , Arabidopsis , Minería de Datos , Conjuntos de Datos como Asunto , Glycine max , Internet , Programas Informáticos , Zea mays , Mutación , Glycine max/genética , Zea mays/genética , Arabidopsis/genética , Visualización de Datos , Genes de Plantas/genética , Pigmentación/genética , Latencia en las Plantas/genética , Frecuencia de los Genes , Sustitución de Aminoácidos , Genotipo , Metadatos , Minería de Datos/métodos
10.
FASEB J ; 36(10): e22559, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36125047

RESUMEN

Increased fluid-flow shear stress (FFSS) contributes to hyperfiltration-induced podocyte and glomerular injury resulting in progression of chronic kidney disease (CKD). We reported that increased FFSS in vitro and in vivo upregulates PGE2 receptor EP2 (but not EP4 expression), COX2-PGE2 -EP2 axis, and EP2-linked Akt-GSK3ß-ß-catenin signaling pathway in podocytes. To understand and use the disparities between PGE2 receptors, specific agonists, and antagonists of EP2 and EP4 were used to assess phosphorylation of Akt, GSK3ß and ß-catenin in podocytes using Western blotting, glomerular filtration barrier function using in vitro albumin permeability (Palb ) assay, and mitigation of hyperfiltration-induced injury in unilaterally nephrectomized (UNX) mice at 1 and 6 months. Results show an increase in Palb by PGE2 , EP2 agonist (EP2AGO ) and EP4 antagonist (EP4ANT ), but not by EP2 antagonist (EP2ANT ) or EP4 agonist (EP4AGO ). Pretreatment with EP2ANT blocked the effect of PGE2 or EP2AGO on Palb . Modulation of EP2 and EP4 also induced opposite effects on phosphorylation of Akt and ß-Catenin. Individual agonists or antagonists of EP2 or EP4 did not induce significant improvement in albuminuria in UNX mice. However, treatment with a combination EP2ANT + EP4AGO for 1 or 6 months caused a robust decrease in albuminuria. EP2ANT + EP4AGO combination did not impact adaptive hypertrophy or increased serum creatinine. Observed differences between expression of EP2 and EP4 on the glomerular barrier highlight these receptors as potential targets for intervention. Safe and effective mitigating effect of EP2ANT + EP4AGO presents a novel opportunity to delay the progression of hyperfiltration-associated CKD as seen in transplant donors.


Asunto(s)
Subtipo EP2 de Receptores de Prostaglandina E , Insuficiencia Renal Crónica , Albúminas , Albuminuria , Animales , Creatinina , Ciclooxigenasa 2 , Dinoprostona/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hormonas Esteroides Gonadales , Ratones , Proteínas Proto-Oncogénicas c-akt , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E , beta Catenina
11.
Nucleic Acids Res ; 49(W1): W228-W236, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34037802

RESUMEN

G2PDeep is an open-access web server, which provides a deep-learning framework for quantitative phenotype prediction and discovery of genomics markers. It uses zygosity or single nucleotide polymorphism (SNP) information from plants and animals as the input to predict quantitative phenotype of interest and genomic markers associated with phenotype. It provides a one-stop-shop platform for researchers to create deep-learning models through an interactive web interface and train these models with uploaded data, using high-performance computing resources plugged at the backend. G2PDeep also provides a series of informative interfaces to monitor the training process and compare the performance among the trained models. The trained models can then be deployed automatically. The quantitative phenotype and genomic markers are predicted using a user-selected trained model and the results are visualized. Our state-of-the-art model has been benchmarked and demonstrated competitive performance in quantitative phenotype predictions by other researchers. In addition, the server integrates the soybean nested association mapping (SoyNAM) dataset with five phenotypes, including grain yield, height, moisture, oil, and protein. A publicly available dataset for seed protein and oil content has also been integrated into the server. The G2PDeep server is publicly available at http://g2pdeep.org. The Python-based deep-learning model is available at https://github.com/shuaizengMU/G2PDeep_model.


Asunto(s)
Marcadores Genéticos , Fenotipo , Programas Informáticos , Aprendizaje Profundo , Genómica , Internet , Polimorfismo de Nucleótido Simple , Glycine max/genética
12.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003263

RESUMEN

Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions. A multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after 12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA (miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and 13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative approach might be useful in understanding how exosomes function, their origin, and their potential clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance. Developing an integrated molecular classification should lead to improved diagnostic classification, risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.


Asunto(s)
Exosomas , MicroARNs , Apnea Obstructiva del Sueño , Adulto , Humanos , Exosomas/metabolismo , Multiómica , Proteómica , Apnea Obstructiva del Sueño/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Lípidos
13.
IEEE Trans Knowl Data Eng ; 35(2): 1402-1420, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36798878

RESUMEN

Shortened time to knowledge discovery and adapting prior domain knowledge is a challenge for computational and data-intensive communities such as e.g., bioinformatics and neuroscience. The challenge for a domain scientist lies in the actions to obtain guidance through query of massive information from diverse text corpus comprising of a wide-ranging set of topics when: investigating new methods, developing new tools, or integrating datasets. In this paper, we propose a novel "domain-specific topic model" (DSTM) to discover latent knowledge patterns about relationships among research topics, tools and datasets from exemplary scientific domains. Our DSTM is a generative model that extends the Latent Dirichlet Allocation (LDA) model and uses the Markov chain Monte Carlo (MCMC) algorithm to infer latent patterns within a specific domain in an unsupervised manner. We apply our DSTM to large collections of data from bioinformatics and neuroscience domains that include more than 25,000 of papers over the last ten years, featuring hundreds of tools and datasets that are commonly used in relevant studies. Evaluation experiments based on generalization and information retrieval metrics show that our model has better performance than the state-of-the-art baseline models for discovering highly-specific latent topics within a domain. Lastly, we demonstrate applications that benefit from our DSTM to discover intra-domain, cross-domain and trend knowledge patterns.

14.
PLoS Pathog ; 16(10): e1009002, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33064772

RESUMEN

The autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular DNA damage sites to establish and sustain viral replication centers, which can be visualized by focal deposition of the essential MVM non-structural phosphoprotein NS1. How such foci are established remains unknown. Here, we show that NS1 localized to cellular sites of DNA damage independently of its ability to covalently bind the 5' end of the viral genome, or its consensus DNA binding sequence. Many of these sites were identical to those occupied by virus during infection. However, localization of the MVM genome to DNA damage sites occurred only when wild-type NS1, but not its DNA-binding mutant was expressed. Additionally, wild-type NS1, but not its DNA binding mutant, could localize a heterologous DNA molecule containing the NS1 binding sequence to DNA damage sites. These findings suggest that NS1 may function as a bridging molecule, helping the MVM genome localize to cellular DNA damage sites to facilitate ongoing virus replication.


Asunto(s)
Daño del ADN , Virus Diminuto del Ratón/genética , Virus Diminuto del Ratón/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Replicación del ADN , ADN Viral/genética , Proteínas de Unión al ADN/genética , Femenino , Genoma Viral , Humanos , Masculino , Ratones , Infecciones por Parvoviridae/genética , Infecciones por Parvoviridae/virología , Parvovirus/genética , Replicación Viral
15.
New Phytol ; 235(2): 611-629, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35441705

RESUMEN

Heat waves occurring during droughts can have a devastating impact on yield, especially if they happen during the flowering and seed set stages of the crop cycle. Global warming and climate change are driving an alarming increase in the frequency and intensity of combined drought and heat stress episodes, critically threatening global food security. Because high temperature is detrimental to reproductive processes, essential for plant yield, we measured the inner temperature, transpiration, sepal stomatal aperture, hormone concentrations and transcriptomic response of closed soybean flowers developing on plants subjected to a combination of drought and heat stress. Here, we report that, during a combination of drought and heat stress, soybean plants prioritize transpiration through flowers over transpiration through leaves by opening their flower stomata, while keeping their leaf stomata closed. This acclimation strategy, termed 'differential transpiration', lowers flower inner temperature by about 2-3°C, protecting reproductive processes at the expense of vegetative tissues. Manipulating stomatal regulation, stomatal size and/or stomatal density of flowers could serve as a viable strategy to enhance the yield of different crops and mitigate some of the current and future impacts of global warming and climate change on agriculture.


Asunto(s)
Sequías , Estomas de Plantas , Productos Agrícolas , Flores , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Estrés Fisiológico
16.
Theor Appl Genet ; 135(6): 2025-2039, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35381870

RESUMEN

KEY MESSAGE: An epistatic interaction between SCN resistance loci rhg1-a and rhg2 in PI 90763 imparts resistance against virulent SCN populations which can be employed to diversify SCN resistance in soybean cultivars. With more than 95% of the $46.1B soybean market dominated by a single type of genetic resistance, breeding for soybean cyst nematode (SCN)-resistant soybean that can effectively combat the widespread increase in virulent SCN populations presents a significant challenge. Rhg genes (for Resistance to Heterodera glycines) play a key role in resistance to SCN; however, their deployment beyond the use of the rhg1-b allele has been limited. In this study, quantitative trait loci (QTL) were mapped using PI 90763 through two biparental F3:4 recombinant inbred line (RIL) populations segregating for rhg1-a and rhg1-b alleles against a SCN HG type 1.2.5.7 (Race 2) population. QTL located on chromosome 18 (rhg1-a) and chromosome 11 (rhg2) were determined to confer SCN resistance in PI 90763. The rhg2 gene was fine-mapped to a 169-Kbp region pinpointing GmSNAP11 as the strongest candidate gene. We demonstrated a unique epistatic interaction between rhg1-a and rhg2 loci that not only confers resistance to multiple virulent SCN populations. Further, we showed that pyramiding rhg2 with the conventional mode of resistance, rhg1-b, is ineffective against these virulent SCN populations. This highlights the importance of pyramiding rhg1-a and rhg2 to maximize the impact of gene pyramiding strategies toward management of SCN populations virulent on rhg1-b sources of resistance. Our results lay the foundation for the next generation of soybean resistance breeding to combat the number one pathogen of soybean.


Asunto(s)
Quistes , Tylenchoidea , Animales , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Glycine max/genética
17.
Physiol Plant ; 174(2): e13672, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35297059

RESUMEN

Advances in next-generation sequencing and other high-throughput technologies have facilitated multiomics research, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and phenomics. The resultant emerging multiomics data have brought new challenges as well as opportunities, as seen in the plant and agriculture science domains. We reviewed several bioinformatic and computational methods, models, and platforms, and we have highlighted some of our in-house developed efforts aimed at multiomics data analysis, integration, and management issues faced by the research community. A case study using multiomics datasets generated from our studies of maize nodal root growth under water deficit stress demonstrates the power of these datasets and some other publicly available tools. This analysis also sheds light on the landscape of such applied bioinformatic tools currently available for plant and crop science studies and introduces emerging trends and how they may affect the future.


Asunto(s)
Biología Computacional , Zea mays , Agricultura , Biología Computacional/métodos , Genómica/métodos , Plantas , Agua , Zea mays/genética
18.
Bioinformatics ; 36(1): 169-176, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31168616

RESUMEN

MOTIVATION: As large amounts of biological data continue to be rapidly generated, a major focus of bioinformatics research has been aimed toward integrating these data to identify active pathways or modules under certain experimental conditions or phenotypes. Although biologically significant modules can often be detected globally by many existing methods, it is often hard to interpret or make use of the results toward pathway model generation and testing. RESULTS: To address this gap, we have developed the IMPRes algorithm, a new step-wise active pathway detection method using a dynamic programing approach. IMPRes takes advantage of the existing pathway interaction knowledge in Kyoto Encyclopedia of Genes and Genomes. Omics data are then used to assign penalties to genes, interactions and pathways. Finally, starting from one or multiple seed genes, a shortest path algorithm is applied to detect downstream pathways that best explain the gene expression data. Since dynamic programing enables the detection one step at a time, it is easy for researchers to trace the pathways, which may lead to more accurate drug design and more effective treatment strategies. The evaluation experiments conducted on three yeast datasets have shown that IMPRes can achieve competitive or better performance than other state-of-the-art methods. Furthermore, a case study on human lung cancer dataset was performed and we provided several insights on genes and mechanisms involved in lung cancer, which had not been discovered before. AVAILABILITY AND IMPLEMENTATION: IMPRes visualization tool is available via web server at http://digbio.missouri.edu/impres. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , Modelos Genéticos , Programas Informáticos , Algoritmos , Perfilación de la Expresión Génica/métodos , Humanos
19.
Physiol Plant ; 171(4): 756-770, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33231322

RESUMEN

Transporters, a class of membrane proteins that facilitate exchange of solutes including diverse molecules and ions across the cellular membrane, are vital component for the survival of all organisms. Understanding plant transporters is important to get insight of the basic cellular processes, physiology, and molecular mechanisms including nutrient uptake, signaling, response to external stress, and many more. In this regard, extensive analysis of transporters predicted in soybean and other plant species was performed. In addition, an integrated database for soybean transporter protein, SoyTD, was developed that will facilitate the identification, classification, and extensive characterization of transporter proteins by integrating expression, gene ontology, conserved domain and motifs, gene structure organization, and chromosomal distribution features. A comprehensive analysis was performed to identify highly confident transporters by integrating various prediction tools. Initially, 7541 transmembrane (TM) proteins were predicted in the soybean genome; out of these, 3306 non-redundant transporter genes carrying two or more transmembrane domains were selected for further analysis. The identified transporter genes were classified according to a standard transporter classification (TC) system. Comparative analysis of transporter genes among 47 plant genomes provided insights into expansion and duplication of transporter genes in land plants. The whole genome resequencing (WGRS) and tissue-specific transcriptome datasets of soybean were integrated to investigate the natural variants and expression profile associated with transporter(s) of interest. Overall, SoyTD provides a comprehensive interface to study genetic and molecular function of soybean transporters. SoyTD is publicly available at http://artemis.cyverse.org/soykb_dev/SoyTD/.


Asunto(s)
Glycine max , Proteínas de Plantas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Transcriptoma
20.
Methods ; 173: 16-23, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31220603

RESUMEN

Nowadays, large amounts of omics data have been generated and contributed to increasing knowledge about associated biological mechanisms. A new challenge coming along is how to identify the active pathways and extract useful insights from these data with huge background information and noise. Although biologically meaningful modules can often be detected by many existing informatics tools, it is still hard to interpret or make use of the results towards in silico hypothesis generation and testing. To address this gap, we previously developed the IMPRes (Integrative MultiOmics Pathway Resolution) v 1.0 algorithm, a new step-wise active pathway detection method using a dynamic programming approach. This approach enables the network detection one step at a time, making it easy for researchers to trace the pathways, and leading to more accurate drug design and more effective treatment strategies. In this paper, we present IMPRes-Pro, an enhancement to IMPRes v1.0 by integrating proteomics data along with transcriptomics data and constructing a heterogeneous background network. The evaluation experiment conducted on human primary breast cancer dataset has shown the advantage over the original IMPRes v1.0 method. Furthermore, a case study on human metastatic breast cancer dataset was performed and we have provided several insights regarding the selection of optimal therapy strategy. IMPRes-Pro algorithm and visualization tool is available as a web service at http://digbio.missouri.edu/impres.


Asunto(s)
Neoplasias de la Mama/genética , Biología Computacional/métodos , Proteómica/métodos , Programas Informáticos , Algoritmos , Neoplasias de la Mama/patología , Gráficos por Computador , Simulación por Computador , Femenino , Perfilación de la Expresión Génica/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA