Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 16(8): e2006352, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30086128

RESUMEN

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Asunto(s)
Microbiota/genética , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Zea mays/metabolismo , México , Microbiota/fisiología , Filogenia , Desarrollo de la Planta , Mucílago de Planta/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Suelo , Microbiología del Suelo
2.
Artículo en Inglés | MEDLINE | ID: mdl-33439117

RESUMEN

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter. The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).


Asunto(s)
Bivalvos/microbiología , Gammaproteobacteria/clasificación , Branquias/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Gammaproteobacteria/aislamiento & purificación , Fijación del Nitrógeno , Océano Pacífico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Washingtón , Madera
3.
Int J Syst Evol Microbiol ; 70(4): 2388-2394, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32100688

RESUMEN

A cellulolytic, aerobic, gammaproteobacterium, designated strain Bs02T, was isolated from the gills of a marine wood-boring mollusc, Bankia setacea (Bivalvia: Teredinidae). The cells are Gram-stain-negative, slightly curved motile rods (2-5×0.4-0.6 µm) that bear a single polar flagellum and are capable of heterotrophic growth in a simple mineral medium supplemented with cellulose as a sole source of carbon and energy. Cellulose, carboxymethylcellulose, xylan, cellobiose and a variety of sugars also support growth. Strain Bs02T requires combined nitrogen for growth. Temperature, pH and salinity optima (range) for growth were 20 °C (range, 10-30 °C), 8.0 (pH 6.5-8.5) and 0.5 M NaCl (range, 0.0-0.8 M), respectively when grown on 0.5 % (w/v) galactose. Strain Bs02T does not require magnesium and calcium ion concentrations reflecting the proportions found in seawater. The genome size is approximately 4.03 Mbp and the DNA G+C content of the genome is 47.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences, and on conserved protein-coding sequences, show that strain Bs02T forms a well-supported clade with Teredinibacter turnerae. Average nucleotide identity and percentage of conserved proteins differentiate strain Bs02T from Teredinibacter turnerae at threshold values exceeding those proposed to distinguish bacterial species but not genera. These results indicate that strain Bs02T represents a novel species in the previously monotypic genus Teredinibacter for which the name Teredinibacter waterburyi sp. nov. is proposed. The strain has been deposited under accession numbers ATCC TSD-120T and KCTC 62963T.


Asunto(s)
Bivalvos/microbiología , Gammaproteobacteria/clasificación , Branquias/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Gammaproteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Madera
4.
Emerg Infect Dis ; 25(11): 2013-2020, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31625848

RESUMEN

During the water crisis in Flint, Michigan, USA (2014-2015), 2 outbreaks of Legionnaires' disease occurred in Genesee County, Michigan. We compared whole-genome sequences of 10 clinical Legionella pneumophila isolates submitted to a laboratory in Genesee County during the second outbreak with 103 water isolates collected the following year. We documented a genetically diverse range of L. pneumophila strains across clinical and water isolates. Isolates belonging to 1 clade (3 clinical isolates, 3 water isolates from a Flint hospital, 1 water isolate from a Flint residence, and the reference Paris strain) had a high degree of similarity (2-1,062 single-nucleotide polymorphisms), all L. pneumophila sequence type 1, serogroup 1. Serogroup 6 isolates belonging to sequence type 2518 were widespread in Flint hospital water samples but bore no resemblance to available clinical isolates. L. pneumophila strains in Flint tap water after the outbreaks were diverse and similar to some disease-causing strains.


Asunto(s)
Agua Potable/microbiología , Genoma Bacteriano , Legionella pneumophila/genética , Enfermedad de los Legionarios/epidemiología , Enfermedad de los Legionarios/microbiología , Microbiología del Agua , Secuenciación Completa del Genoma , Humanos , Legionella pneumophila/clasificación , Legionella pneumophila/aislamiento & purificación , Michigan/epidemiología , Filogenia , Polimorfismo de Nucleótido Simple
5.
Bioinformatics ; 31(4): 587-9, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25338718

RESUMEN

MOTIVATION: Open-source bacterial genome assembly remains inaccessible to many biologists because of its complexity. Few software solutions exist that are capable of automating all steps in the process of de novo genome assembly from Illumina data. RESULTS: A5-miseq can produce high-quality microbial genome assemblies on a laptop computer without any parameter tuning. A5-miseq does this by automating the process of adapter trimming, quality filtering, error correction, contig and scaffold generation and detection of misassemblies. Unlike the original A5 pipeline, A5-miseq can use long reads from the Illumina MiSeq, use read pairing information during contig generation and includes several improvements to read trimming. Together, these changes result in substantially improved assemblies that recover a more complete set of reference genes than previous methods. AVAILABILITY: A5-miseq is licensed under the GPL open-source license. Source code and precompiled binaries for Mac OS X 10.6+ and Linux 2.6.15+ are available from http://sourceforge.net/projects/ngopt CONTACT: aaron.darling@uts.edu.au SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Genoma Bacteriano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Lenguajes de Programación
6.
Vet Sci ; 11(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275924

RESUMEN

Fecal microbiota transplants (FMTs) have been successful at treating digestive and skin conditions in dogs. The degree to which the microbiome is impacted by FMT in a cohort of dogs has not been thoroughly investigated. Using 16S rRNA gene sequencing, we document the changes in the microbiome of fifty-four dogs that took capsules of lyophilized fecal material for their chronic diarrhea, vomiting, or constipation. We found that the relative abundances of five bacterial genera (Butyricicoccus, Faecalibacterium, Fusobacterium, Megamonas, and Sutterella) were higher after FMT than before FMT. Fecal microbiome alpha- and beta-diversity were correlated with kibble and raw food consumption, and prior antibiotic use. On average, 18% of the stool donor's bacterial amplicon sequence variants (ASVs) engrafted in the FMT recipient, with certain bacterial taxa like Bacteroides spp., Fusobacterium spp., and Lachnoclostridium spp. engrafting more frequently than others. Lastly, analyses indicated that the degree of overlap between the donor bacteria and the community of microbes already established in the FMT recipient likely impacts engraftment. Collectively, our work provides further insight into the microbiome and engraftment dynamics of dogs before and after taking oral FMTs.

7.
Microb Genom ; 9(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37052581

RESUMEN

Violacein is a water-insoluble violet pigment produced by various Gram-negative bacteria. The compound and the bacteria that produce it have been gaining attention due to the antimicrobial and proposed antitumour properties of violacein and the possibility that strains producing it may have broad industrial uses. Bacteria that produce violacein have been isolated from diverse environments including fresh and ocean waters, glaciers, tropical soils, trees, fish and the skin of amphibians. We report here the isolation and characterization of six violacein-producing bacterial strains and three non-violacein-producing close relatives, each isolated from either an aquatic environment or moist food materials in northern California, USA. For each isolate, we characterized traditional phenotypes, generated and analysed draft genome sequences, and carried out multiple types of taxonomic, phylogenetic and phylogenomic analyses. Based on these analyses we assign putative identifications to the nine isolates, which include representatives of the genera Chromobacterium, Aquitalea, Iodobacter, Duganella, Massilia and Janthinobacterium. In addition, we discuss the utility of various metrics for taxonomic assignment in these groups including average nucleotide identity, whole genome phylogenetic analysis and extent of recent homologous recombination using the software program PopCOGenT.


Asunto(s)
Antiinfecciosos , Bacterias , Animales , Filogenia , Secuencia de Bases , Bacterias Gramnegativas
8.
Animals (Basel) ; 13(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958109

RESUMEN

The domestic ferret (Mustela putorius furo) is a popular companion pet in the United States, with an estimated population of 500,000. Despite being obligate carnivores with a fast digestive system, little is known about their gut microbiomes. This study aims to compare the fecal microbiomes of healthy domestic ferrets and cats, which are both obligate carnivores. We collected and analyzed stool samples from 36 healthy ferrets and 36 healthy cats, sequencing the V4 region of the 16S rRNA gene. Using QIIME 2, we assessed the alpha and beta diversities and identified the taxa differences. Compared to cats, ferrets exhibited a higher representation of Firmicutes and Proteobacteria, while Bacteroidota and Actinomycetota were more prevalent in cats. The ferrets' microbiomes displayed lower alpha diversities. The highly present bacterial genera in the gut microbiomes of ferrets included Clostridium sensu stricto, Streptococcus, Romboutsia, Paeniclostridium, Lactobacillus, Enterococcus, and Lactococcus. Notably, the ferrets' microbiomes significantly differed from those of cats. This research highlights the potential differences in gastrointestinal care for ferrets, emphasizing the need for tailored approaches. Future studies should explore microbiome variations in ferrets with gastrointestinal issues and their responses to dietary and medical interventions.

9.
ISME J ; 17(3): 453-466, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639537

RESUMEN

Chemosynthetic symbioses between bacteria and invertebrates occur worldwide from coastal sediments to the deep sea. Most host groups are restricted to either shallow or deep waters. In contrast, Lucinidae, the most species-rich family of chemosymbiotic invertebrates, has both shallow- and deep-sea representatives. Multiple lucinid species have independently colonized the deep sea, which provides a unique framework for understanding the role microbial symbionts play in evolutionary transitions between shallow and deep waters. Lucinids acquire their symbionts from their surroundings during early development, which may allow them to flexibly acquire symbionts that are adapted to local environments. Via metagenomic analyses of museum and other samples collected over decades, we investigated the biodiversity and metabolic capabilities of the symbionts of 22 mostly deep-water lucinid species. We aimed to test the theory that the symbiont played a role in adaptation to life in deep-sea habitats. We identified 16 symbiont species, mostly within the previously described genus Ca. Thiodiazotropha. Most genomic functions were shared by both shallow-water and deep-sea Ca. Thiodiazotropha, though nitrogen fixation was exclusive to shallow-water species. We discovered multiple cases of symbiont switching near deep-sea hydrothermal vents and cold seeps, where distantly related hosts convergently acquired novel symbionts from a different bacterial order. Finally, analyses of selection revealed consistently stronger purifying selection on symbiont genomes in two extreme habitats - hydrothermal vents and an oxygen-minimum zone. Our findings reveal that shifts in symbiont metabolic capability and, in some cases, acquisition of a novel symbiont accompanied adaptation of lucinids to challenging deep-sea habitats.


Asunto(s)
Respiraderos Hidrotermales , Simbiosis , Filogenia , Simbiosis/genética , Adaptación Fisiológica , Evolución Biológica , Bacterias/genética , Agua
10.
Vet Sci ; 10(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756083

RESUMEN

There is growing interest in the application of fecal microbiota transplants (FMTs) in small animal medicine, but there are few published studies that have tested their effects in the domestic cat (Felis catus). Here we use 16S rRNA gene sequencing to examine fecal microbiome changes in 46 domestic cats with chronic digestive issues that received FMTs using lyophilized stool that was delivered in oral capsules. Fecal samples were collected from FMT recipients before and two weeks after the end of the full course of 50 capsules, as well as from their stool donors (N = 10), and other healthy cats (N = 113). The fecal microbiomes of FMT recipients varied with host clinical signs and dry kibble consumption, and shifts in the relative abundances of Clostridium, Collinsella, Megamonas, Desulfovibrio and Escherichia were observed after FMT. Overall, donors shared 13% of their bacterial amplicon sequence variants (ASVs) with FMT recipients and the most commonly shared ASVs were classified as Prevotella 9, Peptoclostridium, Bacteroides, and Collinsella. Lastly, the fecal microbiomes of cats with diarrhea became more similar to the microbiomes of age-matched and diet-matched healthy cats compared to cats with constipation. Overall, our results suggest that microbiome responses to FMT may be modulated by the FMT recipient's initial presenting clinical signs, diet, and their donor's microbiome.

11.
Animals (Basel) ; 13(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003162

RESUMEN

Feline chronic gingivostomatitis (FCGS) is a chronic mucosal and gingival inflammatory disease in which pathogenesis remains unclear. Interactions between the host inflammatory process, the host immune response, and the oral microbiome are implicated in this pathogenesis. To begin to understand this disease and the impact of the microbiome to host inflammatory disease states, we collected sterile noninvasive plaque biofilm samples from ten distinct sites within the oral cavity in cats with stomatitis (n = 12), healthy cats (n = 9), and cats with tooth resorption or periodontitis (n = 11). Analysis of full-length 16S rRNA gene sequences indicated that the microbiomes of cats with FCGS presented marked dysbiosis at multiple oral sites. Additionally, microbiome beta diversity varied with oral condition, indicating that stomatitis, periodontitis, and/or tooth resorption influence the microbiome differently. Lastly, we found that the microbiomes of swabs taken from the oral cavity were comparable to those taken from plaque using endodontic paper points, validating this as another sampling method. Collectively, our work furthers our understanding of the dysbiosis and composition of bacteria in the oral microbiome in FCGS, with hopes of contributing to the prevention, diagnosis, and treatment of this challenging condition in felines.

12.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711483

RESUMEN

Background and aims: Major clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, and little is known about other tissues involvement in metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B could contribute to metabolic dysregulation in WD. We tested this hypothesis by evaluating gut microbiota and lipidome in two mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in intestine. Methods: Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice ( Atp7b ΔIEC ) was generated using B6.Cg-Tg(Vil1-cre)997Gum/J mice and Atp7b Lox/Lox mice, and characterized using targeted lipidome analysis following a high-fat diet challenge. Results: Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated tri- and diglyceride, phospholipid, and sphingolipid metabolism in WD models. When challenged with a high-fat diet, Atp7b ΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. Conclusion: Coordinated changes of gut microbiome and lipidome analyses underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence phenotypic presentations.

13.
Hepatol Commun ; 7(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695076

RESUMEN

BACKGROUND: The clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, but little is known about other tissue involvement regarding metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B affects metabolic dysregulation in WD. We tested this hypothesis by evaluating the gut microbiota and lipidome in 2 mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in the intestine. METHODS: Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice (Atp7bΔIEC) were generated and characterized using targeted lipidome analysis following a high-fat diet challenge. RESULTS: Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated triglyceride and diglyceride, phospholipid, and sphingolipid metabolism in WD models. However, Atp7bΔIEC mice did not show gut microbiome differences compared to wild type. When challenged with a high-fat diet, Atp7bΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. CONCLUSIONS: Gut microbiome and lipidome underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge but not the microbiome profile, at least at early stages. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence the phenotype and the lipidome profile.


Asunto(s)
Degeneración Hepatolenticular , Animales , Ratones , Degeneración Hepatolenticular/genética , Metabolismo de los Lípidos/genética , Modelos Animales de Enfermedad , Esfingolípidos , Intestinos
14.
BMC Bioinformatics ; 13: 264, 2012 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-23061897

RESUMEN

BACKGROUND: New computational resources are needed to manage the increasing volume of biological data from genome sequencing projects. One fundamental challenge is the ability to maintain a complete and current catalog of protein diversity. We developed a new approach for the identification of protein families that focuses on the rapid discovery of homologous protein sequences. RESULTS: We implemented fully automated and high-throughput procedures to de novo cluster proteins into families based upon global alignment similarity. Our approach employs an iterative clustering strategy in which homologs of known families are sifted out of the search for new families. The resulting reduction in computational complexity enables us to rapidly identify novel protein families found in new genomes and to perform efficient, automated updates that keep pace with genome sequencing. We refer to protein families identified through this approach as "Sifting Families," or SFams. Our analysis of ~10.5 million protein sequences from 2,928 genomes identified 436,360 SFams, many of which are not represented in other protein family databases. We validated the quality of SFam clustering through statistical as well as network topology-based analyses. CONCLUSIONS: We describe the rapid identification of SFams and demonstrate how they can be used to annotate genomes and metagenomes. The SFam database catalogs protein-family quality metrics, multiple sequence alignments, hidden Markov models, and phylogenetic trees. Our source code and database are publicly available and will be subject to frequent updates (http://edhar.genomecenter.ucdavis.edu/sifting_families/).


Asunto(s)
Filogenia , Proteínas/clasificación , Homología de Secuencia de Aminoácido , Análisis por Conglomerados , Bases de Datos de Proteínas , Genómica/métodos , Anotación de Secuencia Molecular , Proteínas/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína
15.
PLoS One ; 17(1): e0259889, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045086

RESUMEN

The prevalence of overweight and obesity is greatest amongst Black women in the U.S., contributing to disproportionately higher type 2 diabetes prevalence compared to White women. Insulin resistance, independent of body mass index, tends to be greater in Black compared to White women, yet the mechanisms to explain these differences are not completely understood. The gut microbiome is implicated in the pathophysiology of obesity, insulin resistance and cardiometabolic disease. Only two studies have examined race differences in Black and White women, however none characterizing the gut microbiome based on insulin sensitivity by race and sex. Our objective was to determine if gut microbiome profiles differ between Black and White women and if so, determine if these race differences persisted when accounting for insulin sensitivity status. In a pilot cross-sectional analysis, we measured the relative abundance of bacteria in fecal samples collected from a subset of 168 Black (n = 94) and White (n = 74) women of the National Growth and Health Study (NGHS). We conducted analyses by self-identified race and by race plus insulin sensitivity status (e.g. insulin sensitive versus insulin resistant as determined by HOMA-IR). A greater proportion of Black women were classified as IR (50%) compared to White women (30%). Alpha diversity did not differ by race nor by race and insulin sensitivity status. Beta diversity at the family level was significantly different by race (p = 0.033) and by the combination of race plus insulin sensitivity (p = 0.038). Black women, regardless of insulin sensitivity, had a greater relative abundance of the phylum Actinobacteria (p = 0.003), compared to White women. There was an interaction between race and insulin sensitivity for Verrucomicrobia (p = 0.008), where among those with insulin resistance, Black women had four fold higher abundance than White women. At the family level, we observed significant interactions between race and insulin sensitivity for Lachnospiraceae (p = 0.007) and Clostridiales Family XIII (p = 0.01). Our findings suggest that the gut microbiome, particularly lower beta diversity and greater Actinobacteria, one of the most abundant species, may play an important role in driving cardiometabolic health disparities of Black women, indicating an influence of social and environmental factors on the gut microbiome.


Asunto(s)
Resistencia a la Insulina
16.
Vet Med Sci ; 8(3): 1049-1055, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35060350

RESUMEN

BACKGROUND: Trigeminal-mediated headshaking (TMHS) in horses is a form of neuropathic pain of undetermined cause that often results in euthanasia. The role of microbiota in TMHS has not been investigated in diseased horses. OBJECTIVE: To investigate if gastrointestinal microbiota in the cecum is different in horses with TMHS compared to a control population, during a summer season with clinical manifestations of disease. ANIMALS: Ten castrated horses: five with TMHS and five neurologically normal controls. METHODS: All horses were sourced from our institution and kept under the same husbandry and dietary conditions. All horses were fed orchard grass hay for 30 days and then were euthanized due to chronic untreatable conditions including TMHS and orthopedic disease (control group). Caecal samples for microbiota analysis were collected within 20 min after euthanasia. Sequencing was performed using an Illumina MiSeq platform and the microbiome was analyzed. RESULTS: The caecal microbiota of horses with TMHS was similar to control horses in terms of diversity but differed significantly with Methanocorpusculum spp. having higher abundance in horses with TMHS.  CONCLUSIONS AND CLINICAL IMPORTANCE: Methanocorpusculum spp. was more abundant in the cecum of horses with TMHS. However, its role in disease is unknown. Furthermore, it could also represent an incidental finding due to our small population size.


Asunto(s)
Enfermedades de los Caballos , Microbiota , Animales , Ciego , Dieta/veterinaria , Caballos , Estaciones del Año
17.
Vet Sci ; 9(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36423084

RESUMEN

Here, we present a taxonomically defined fecal microbiome dataset for healthy domestic cats (Felis catus) fed a range of commercial diets. We used this healthy reference dataset to explore how age, diet, and living environment correlate with fecal microbiome composition. Thirty core bacterial genera were identified. Prevotella, Bacteroides, Collinsella, Blautia, and Megasphaera were the most abundant, and Bacteroides, Blautia, Lachnoclostridium, Sutterella, and Ruminococcus gnavus were the most prevalent. While community composition remained relatively stable across different age classes, the number of core taxa present decreased significantly with age. Fecal microbiome composition varied with host diet type. Cats fed kibble had a slightly, but significantly greater number of core taxa compared to cats not fed any kibble. The core microbiomes of cats fed some raw food contained taxa not as highly prevalent or abundant as cats fed diets that included kibble. Living environment also had a large effect on fecal microbiome composition. Cats living in homes differed significantly from those in shelters and had a greater portion of their microbiomes represented by core taxa. Collectively our work reinforces the findings that age, diet, and living environment are important factors to consider when defining a core microbiome in a population.

18.
J Genomics ; 9: 55-67, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646396

RESUMEN

Cold-tolerant bacteria are known to contaminate and cause defects in refrigerated foods. Defects in food products can be observed as changes in appearance, texture, and/or flavor that detract from the product's intended look, feel, or taste. Two distinct organisms were cultured from blue pigmented soymilk and tofu that had been left opened and expired in a home refrigerator. The blue coloration was reproduced when isolates were cultured in fresh, sterile soymilk. These strains also produced a variety of colony color morphologies when cultured on different media types. We report two draft genome sequences of the potential causative agents of blue discoloration of soy foods, Pseudomonas carnis strains UCD_MED3 and UCD_MED7 as well as the 16S rRNA gene sequences of co-occurring strains isolated from the defective soy samples but that did not cause blue discoloration when cultured in fresh soymilk; Serratia liquefaciens strains UCD_MED2 and UCD_MED5.

19.
Microbiol Resour Announc ; 10(31): e0055721, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34351234

RESUMEN

Here, we report 11 metagenome-assembled genomes (MAGs) reconstructed from freshwater and saltwater aquaria, including representatives of Polynucleobacter, Anaerolinea, Roseobacter, Flavobacteriia, Octadecabacter, Mycobacterium, and Candidate Phyla Radiation (CPR) members. These MAGs can serve as a resource for aquatic research and elucidating the role of CPR taxa in the built environment.

20.
J Genomics ; 8: 25-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32190126

RESUMEN

Christensenella minuta was first formally described in 2012 as a member of a novel species, genus, and proposed family of Christensenellaceae. C. minuta was later shown in one study to be part of the most heritable taxonomic group in the human gut microbiome and to be enriched in people with low body mass index (BMI). Mouse work demonstrated that injection of cultured C. minuta into germ-free mice prevented the onset of obesity after a fecal transplant to the mice from high BMI individuals. Here we describe the genome sequence of C. minuta DSM 22607. Examination and analysis of the annotation revealed an unusually high number of genes predicted to be involved in carbohydrate metabolism, many of which were multiple homologs of RbsA, RbsB and RbsC, which together make up the Ribose ABC Transport System. These genes may be also involved in quorum sensing which could potentially relate to the importance of C. minuta in the gut microbiome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA