Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pflugers Arch ; 476(9): 1307-1337, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38509356

RESUMEN

Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia , Animales , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Oxígeno/metabolismo , Eliminación de Gen , Procolágeno-Prolina Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Hipoxia/metabolismo
2.
Methods Mol Biol ; 2755: 249-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319583

RESUMEN

Cellular and tissue adaptations to oxygen deprivation (hypoxia) are necessary for both normal physiology and disease. Responses to hypoxia are initiated by the cellular oxygen sensors prolyl-4-hydroxylase domain (PHD) proteins 1-3 and factor inhibiting HIF (FIH). These enzymes regulate the transcription factor hypoxia-inducible factor (HIF) in a hypoxia-sensitive manner. FIH also regulates proteins outside the HIF pathway, including the deubiquitinase OTUB1. Numerous preclinical analyses have demonstrated that treatment with HIF hydroxylase inhibitors is beneficial and protective in many hypoxia-associated diseases. However, clinically available HIF hydroxylase inhibitors increase erythropoietin (EPO) gene expression and red blood cell production, which can be detrimental in hypoxia-associated conditions, such as ischemia/reperfusion injury of the heart or chronic inflammation. Our understanding of the relevance of FIH in (patho)physiology is only in its infancy, but FIH activity does not govern erythropoietin expression. Therefore, it is of prime interest to assess the relevance of FIH activity in (patho)physiology in detail, as it may contribute to developing novel therapeutic options for treating hypoxia-associated diseases that do not affect Epo regulation. Here, we describe specific protocols for two different methods to assess FIH enzymatic activity within cells, using a HIF-dependent firefly luciferase-reporter gene and an oxomer-dependent assay. Oxomers are oxygen-dependent stable protein oligomers formed by FIH, for example, with the deubiquitinase OTUB1. Oxomer formation directly depends on FIH activity, providing a suitable cellular readout for an easy-to-use analysis of FIH enzymatic activity in cellulo. These techniques permit an analysis of FIH activity toward HIF and outside the HIF pathway, allowing the investigation of FIH activity under different (patho)physiological conditions and assessment of novel (putative) inhibitors.


Asunto(s)
Eritropoyetina , Humanos , Genes Reporteros , Eritropoyetina/genética , Oxigenasas de Función Mixta , Hipoxia , Oxígeno , Enzimas Desubicuitinizantes
3.
Mol Cell Biol ; 44(4): 138-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644795

RESUMEN

Pharmacologic inhibitors of cellular hydroxylase oxygen sensors are protective in multiple preclinical in vivo models of inflammation. However, the molecular mechanisms underlying this regulation are only partly understood, preventing clinical translation. We previously proposed a new mechanism for cellular oxygen sensing: oxygen-dependent, (likely) covalent protein oligomer (oxomer) formation. Here, we report that the oxygen sensor factor inhibiting HIF (FIH) forms an oxomer with the NF-κB inhibitor ß (IκBß). The formation of this protein complex required FIH enzymatic activity and was prevented by pharmacologic inhibitors. Oxomer formation was highly hypoxia-sensitive and very stable. No other member of the IκB protein family formed an oxomer with FIH, demonstrating that FIH-IκBß oxomer formation was highly selective. In contrast to the known FIH-dependent oxomer formation with the deubiquitinase OTUB1, FIH-IκBß oxomer formation did not occur via an IκBß asparagine residue, but depended on the amino acid sequence VAERR contained within a loop between IκBß ankyrin repeat domains 2 and 3. Oxomer formation prevented IκBß from binding to its primary interaction partners p65 and c-Rel, subunits of NF-κB, the master regulator of the cellular transcriptional response to pro-inflammatory stimuli. We therefore propose that FIH-mediated oxomer formation with IκBß contributes to the hypoxia-dependent regulation of inflammation.


Asunto(s)
FN-kappa B , Humanos , FN-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Unión Proteica , Hipoxia de la Célula , Oxígeno/metabolismo , Células HEK293 , Oxigenasas de Función Mixta/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Hipoxia/metabolismo , Proteínas Represoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA