Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genes Dev ; 28(24): 2726-38, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25512560

RESUMEN

The WD40 domain-containing protein WRAP53ß (WD40 encoding RNA antisense to p53; also referred to as WDR79/TCAB1) controls trafficking of splicing factors and the telomerase enzyme to Cajal bodies, and its functional loss has been linked to carcinogenesis, premature aging, and neurodegeneration. Here, we identify WRAP53ß as an essential regulator of DNA double-strand break (DSB) repair. WRAP53ß rapidly localizes to DSBs in an ATM-, H2AX-, and MDC1-dependent manner. We show that WRAP53ß targets the E3 ligase RNF8 to DNA lesions by facilitating the interaction between RNF8 and its upstream partner, MDC1, in response to DNA damage. Simultaneous binding of MDC1 and RNF8 to the highly conserved WD40 scaffold domain of WRAP53ß facilitates their interaction and accumulation of RNF8 at DSBs. In this manner, WRAP53ß controls proper ubiquitylation at DNA damage sites and the downstream assembly of 53BP1, BRCA1, and RAD51. Furthermore, we reveal that knockdown of WRAP53ß impairs DSB repair by both homologous recombination (HR) and nonhomologous end-joining (NHEJ), causes accumulation of spontaneous DNA breaks, and delays recovery from radiation-induced cell cycle arrest. Our findings establish WRAP53ß as a novel regulator of DSB repair by providing a scaffold for DNA repair factors.


Asunto(s)
Reparación del ADN/fisiología , Telomerasa/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Telomerasa/genética , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas
2.
Mol Biol Cell ; 33(5): br7, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235370

RESUMEN

During mitosis, sister chromatids congress on both sides of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have a pivotal role in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are involved. Here, we show that the microtubule plus-end tracking protein Bik1-the budding yeast ortholog of CLIP-170-is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell cycle-dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to slower cell-cycle progression characterized by a delayed metaphase-anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in the Bik1-NES mutant and does not localize to the unclustered kinetochores. We propose that Bik1 functions with Cin8 to regulate kinetochore-microtubule dynamics for correct kinetochore positioning and chromosome congression.


Asunto(s)
Cinesinas , Proteínas Asociadas a Microtúbulos , Proteínas de Saccharomyces cerevisiae , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
3.
Biol Open ; 11(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259662

RESUMEN

Spc110 is an essential component of the spindle pole body (SPB), the yeast equivalent of the centrosome, that recruits the γ-tubulin complex to the nuclear side of the SPB to produce the microtubules that form the mitotic spindle. Here, we identified phosphosites S11 and S36 in maternally originated Spc110 and explored their functions in vivo. Yeast expressing non-phosphorylatable Spc110S11A had a distinct spindle phenotype characterised by higher levels of α-tubulin, which was frequently asymmetrically distributed between the two SPBs. Furthermore, expression of the double mutant Spc110S11AS36A had a delayed cell cycle progression. Specifically, the final steps of mitosis were delayed in Spc110S11AS36A cells, including expression and degradation of the mitotic cyclin Clb2, disassembling the mitotic spindle and re-localizing Cdc14 to the nucleoli, resulting in late mitotic exit and entry in G1. Thus, we propose that Spc110 phosphorylation at S11 and S36 is required to regulate timely cell cycle progression in budding yeast. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Centrosoma/metabolismo , Cuerpos Polares del Huso/metabolismo , Huso Acromático/metabolismo , Mitosis , Proteínas de Unión a Calmodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA