Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(27): 8591-8615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35466822

RESUMEN

Cultured meat production technology suggested that can solve the problems of traditional meat production such as inadequate breeding environment, wastewater, methane gas generation, and animal ethics issues. Complementing cultured meat production methods, sales and safety concerns will make the use of cultured meat technology easier. This review contextualizes the commercialization status of cultured meat and the latest technologies and challenges associated with its production. Investigation was conducted on materials and basic cell culture technique for cultured meat culture is presented. The development of optimal cultured meat technology through these studies will be an innovative leap in food technology. The process of obtaining cells from animal muscle, culturing cells, and growing cells into meat are the basic processes of cultured meat production. The substances needed to production of cultured meat were antibiotics, digestive enzymes, basal media, serum or growth factors. Although muscle cells have been produced closer to meat due to the application of scaffolds materials and 3 D printing technology, still a limit to reducing production costs enough to be used as foods. In addition, developing edible materials is also a challenge because the materials used to produce cultured meat are still not suitable for food sources.


Asunto(s)
Carne , Tecnología , Animales , Impresión Tridimensional , Antibacterianos , Técnicas de Cultivo de Célula
2.
J Radiol Prot ; 40(1): 225-242, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31509813

RESUMEN

Significant efforts such as the Pediatric Proton/Photon Consortium Registry (PPCR) involving multiple proton therapy centers have been made to conduct collaborative studies evaluating outcomes following proton therapy. As a groundwork dosimetry effort for the late effect investigation, we developed a Monte Carlo (MC) model of proton pencil beam scanning (PBS) to estimate organ/tissue doses of pediatric patients at the Maryland Proton Treatment Center (MPTC), one of the proton centers involved in the PPCR. The MC beam modeling was performed using the TOPAS (TOol for PArticle Simulation) MC code and commissioned to match measurement data within 1% for range, and 0.3 mm for spot sizes. The established MC model was then tested by calculating organ/tissue doses for sample intracranial and craniospinal irradiations on whole-body pediatric computational human phantoms. The simulated dose distributions were compared with the treatment planning system dose distributions, showing the 3 mm/3% gamma index passing rates of 94%-99%, validating our simulations with the MC model. The calculated organ/tissue doses per prescribed doses for the craniospinal irradiations (1 mGy Gy-1 to 1 Gy Gy-1) were generally much higher than those for the intracranial irradiations (2.1 µGy Gy-1 to 0.1 Gy Gy-1), which is due to the larger field coverage of the craniospinal irradiations. The largest difference was observed at the adrenal dose, i.e. ∼3000 times. In addition, the calculated organ/tissue doses were compared with those calculated with a simplified MC model, showing that the beam properties (i.e. spot size, spot divergence, mean energy, and energy spread) do not significantly influence dose calculations despite the limited irradiation cases. This implies that the use of the MC model commissioned to the MPTC measurement data might be dosimetrically acceptable for patient dose reconstructions at other proton centers particularly when their measurement data are unavailable. The developed MC model will be used to reconstruct organ/tissue doses for MPTC pediatric patients collected in the PPCR.


Asunto(s)
Encéfalo/efectos de la radiación , Terapia de Protones , Radiometría , Columna Vertebral/efectos de la radiación , Niño , Humanos , Maryland , Modelos Biológicos , Método de Montecarlo , Neoplasias Inducidas por Radiación/epidemiología , Traumatismos por Radiación/epidemiología , Dosificación Radioterapéutica
3.
Mol Cell ; 44(2): 203-13, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22017869

RESUMEN

In mammals, the Sirtuins are composed of seven Sir2 orthologs (Sirt1-7) with a conserved deacetylase core that utilizes NAD(+) as a cofactor. Interestingly, the deacetylase core of Sirt1 by itself has no catalytic activity. We found within the C-terminal domain a 25 aa sequence that is essential for Sirt1 activity (ESA). Our results indicate that the ESA region interacts with and functions as an "on switch" for the deacetylase core. The endogenous Sirt1 inhibitor DBC1, which also binds to the deacetylase core, competes with and inhibits the ESA region from interacting with the deacetylase core. We discovered an ESA mutant peptide that can bind to the deacetylase core and inhibit Sirt1 in trans. By using this mutant peptide, we were able to inhibit Sirt1 activity and to increase the chemosensitivity of androgen-refractory prostate cancer cells. Therefore, the ESA region is a potential target for development of therapies to regulate Sirt1.


Asunto(s)
Péptidos/química , Sirtuina 1/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Péptidos/farmacología , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/química , Proteínas Supresoras de Tumor/metabolismo
4.
Pediatr Blood Cancer ; 65(12): e27395, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30101560

RESUMEN

PURPOSE: This pilot study was done to determine the feasibility and accuracy of University of Florida/National Cancer Institute (UF/NCI) phantoms and Monte Carlo (MC) retrospective dosimetry and had two aims: (1) to determine the anatomic accuracy of UF/NCI phantoms by comparing 3D organ doses in National Wilms Tumor Study (NWTS) patient-matched UF/NCI phantoms to organ doses in corresponding patient-matched CT scans and (2) to compare infield and out-of-field organ dosimetry using two dosimetry methods-standard radiation therapy (RT) treatment planning systems (TPS) and MC dosimetry in these two anatomic models. METHODS: Twenty NWTS patient-matched Digital Imaging and Communications in Medicine (DICOM) files of UF/NCI phantoms and CT scans were imported into the Pinnacle RT TPS. The NWTS RT fields (whole abdomen, flank, whole lung, or a combination) and RT doses (10-45 Gy) were reconstructed in both models. Both TPS and MC dose calculations were performed. For aim 1, the mean doses to the heart, kidney, thyroid gland, testes, and ovaries using TPS and MC in both models were statistically compared. For aim 2, the TPS and MC dosimetry for these organs in both models were statistically compared. RESULTS: For aim 1, there was no significant difference between phantom and CT scan dosimetry for any of the organs using either TPS or MC dosimetry. For aim 2, there was a significant difference between TPS and MC dosimetry for both CT scan and phantoms for all organs. Although the doses for infield organs were similar for both TPS and MC, the doses for near-field and out-of-field organs were consistently higher for 90% to 100% of MC doses; however, the absolute dose difference was small (<1 Gy). CONCLUSIONS: This pilot study has demonstrated that the patient-matched UF/NCI phantoms together with MC dosimetry is an accurate model for performing retrospective 3D dosimetry in large-scale epidemiology studies such as the NWTS.


Asunto(s)
Neoplasias Renales/radioterapia , Fantasmas de Imagen , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tumor de Wilms/radioterapia , Niño , Preescolar , Estudios de Factibilidad , Femenino , Humanos , Lactante , Masculino , Método de Montecarlo , Órganos en Riesgo/efectos de la radiación , Proyectos Piloto , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/instrumentación , Tomografía Computarizada por Rayos X
5.
Arch Orthop Trauma Surg ; 138(9): 1223-1234, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29774386

RESUMEN

INTRODUCTION: It is likely that posterior-wall involvement in association with two-column fractures plays a pivotal role in outcomes because of the potential for hip instability if it is not anatomically reduced and fixed. Uncertainty remains about how this fracture is best treated, especially regarding how posterior-wall involvement may affect functional results. MATERIALS AND METHODS: To better understand the role that posterior-wall involvement may play in determining functional results, we compared data for outcomes for patients with posterior-wall involvement and for those without in a consecutive series of two-column fractures. Between 2000 and 2013, 42 patients who underwent surgical treatment for two-column acetabular fractures were evaluated after a minimum follow-up period of 1 year. Data were prospectively collected and retrospectively evaluated. Of the 42 patients, 25 had only a two-column fracture (group 1) and 17 had a two-column fracture with posterior-wall involvement (group 2). RESULTS: There were no differences between groups in terms of reduction accuracy, radiographic results, clinical results, or complication rates. All hips in patients with internal fixation for the associated posterior-wall fracture had anatomical reduction. At the latest follow-up evaluation, three patients from group 1 (without posterior-wall involvement) and three patients from group 2 (with posterior-wall involvement) had undergone total hip arthroplasty. CONCLUSION: These results suggest that a posterior-wall fracture in a two-column fracture does not compromise functional outcomes when the treatment algorithm discussed here is followed.


Asunto(s)
Acetábulo/lesiones , Fijación Interna de Fracturas/métodos , Fracturas Óseas/cirugía , Acetábulo/cirugía , Adolescente , Adulto , Anciano , Placas Óseas/efectos adversos , Tornillos Óseos/efectos adversos , Femenino , Fijación Interna de Fracturas/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
6.
J Radiol Prot ; 38(2): 775-792, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29637904

RESUMEN

Radiation dosimetry is an essential input for epidemiological studies of radiotherapy patients aimed at quantifying the dose-response relationship of late-term morbidity and mortality. Individualised organ dose must be estimated for all tissues of interest located in-field, near-field, or out-of-field. Whereas conventional measurement approaches are limited to points in water or anthropomorphic phantoms, computational approaches using patient images or human phantoms offer greater flexibility and can provide more detailed three-dimensional dose information. In the current study, we systematically compared four different dose calculation algorithms so that dosimetrists and epidemiologists can better understand the advantages and limitations of the various approaches at their disposal. The four dose calculations algorithms considered were as follows: the (1) Analytical Anisotropic Algorithm (AAA) and (2) Acuros XB algorithm (Acuros XB), as implemented in the Eclipse treatment planning system (TPS); (3) a Monte Carlo radiation transport code, EGSnrc; and (4) an accelerated Monte Carlo code, the x-ray Voxel Monte Carlo (XVMC). The four algorithms were compared in terms of their accuracy and appropriateness in the context of dose reconstruction for epidemiological investigations. Accuracy in peripheral dose was evaluated first by benchmarking the calculated dose profiles against measurements in a homogeneous water phantom. Additional simulations in a heterogeneous cylinder phantom evaluated the performance of the algorithms in the presence of tissue heterogeneity. In general, we found that the algorithms contained within the commercial TPS (AAA and Acuros XB) were fast and accurate in-field or near-field, but not acceptable out-of-field. Therefore, the TPS is best suited for epidemiological studies involving large cohorts and where the organs of interest are located in-field or partially in-field. The EGSnrc and XVMC codes showed excellent agreement with measurements both in-field and out-of-field. The EGSnrc code was the most accurate dosimetry approach, but was too slow to be used for large-scale epidemiological cohorts. The XVMC code showed similar accuracy to EGSnrc, but was significantly faster, and thus epidemiological applications seem feasible, especially when the organs of interest reside far away from the field edge.


Asunto(s)
Algoritmos , Estudios Epidemiológicos , Radiometría/métodos , Dosificación Radioterapéutica , Relación Dosis-Respuesta en la Radiación , Humanos
7.
Brachytherapy ; 23(3): 377-386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38336557

RESUMEN

PURPOSE: To provide a practical method of estimating medium-heterogeneity corrected dose without a Monte Carlo (MC) calculation in ocular brachytherapy using 125I Collaborative Ocular Melanoma Study (COMS) plaques. METHODS AND MATERIALS: Using egs_brachy, MC simulations (1) under task group-43 assumptions with fully loaded seed configurations in water (HOMO) and (2) with effects of plaque backing, insert and inter-seed interactions (HETERO) were performed for seven 125I COMS plaques (10 mm-22 mm in diameter), and homogeneous dose (DHOMO) and heterogeneous dose (DHETERO) for central-axis and off-axis points were determined. For DHOMO, 85 Gy was normalized to a depth of 5 mm. Central-axis heterogeneity correction factors (HCFs) from a depth of 0 mm (inner sclera) to 22 mm (opposite retina) were derived from a ratio of DHETERO to DHOMO. Off-axis HCFs for optic disc/macula and lens as a function of distance from optic disc/macula (DT/MT) for various basal dimensions of tumor (BD/BM) were derived from DHETERO/DHOMO. RESULTS: Central-axis HCF varied with a dose reduction of 10.3-19.8% by heterogeneity. Off-axis HCF for optic disc/macula varied significantly depending on DT/MT and BD/BM with a dose reduction of 11.3-38.3%. Off-axis HCF for lens had a dependence on MT and BM with its variation of 11.0-19.0%. A clinical example of using HCFs to estimate DHETERO was presented. CONCLUSIONS: The practical method of using depth-dependent central-axis HCF and DT/MT- and BD/BM-dependent off-axis HCF provided in this study will facilitate a heterogeneous dose estimate for 125I COMS plaques without MC calculations.


Asunto(s)
Braquiterapia , Neoplasias del Ojo , Radioisótopos de Yodo , Melanoma , Método de Montecarlo , Dosificación Radioterapéutica , Braquiterapia/métodos , Humanos , Radioisótopos de Yodo/uso terapéutico , Melanoma/radioterapia , Neoplasias del Ojo/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos
8.
Nutr Res Pract ; 17(3): 408-420, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37266125

RESUMEN

BACKGROUND/OBJECTIVES: Hizikia fusiformis (HF) is a class of brown seaweeds whose active ingredients exert central nervous system protective effects, such as neuroprotection; however, the underlying mechanisms remain unknown. Given that dopamine (DA) and serotonin (5HT) are two major neurotransmitters involved in various psychiatric disorders and neuronal growth in early neurodevelopmental processes, we investigated whether HF extract could modulate the molecular expression associated with DA and 5HT transmission as well as the structural formation of neurons. MATERIALS/METHODS: In vitro cell cultures were prepared from cerebral cortical neurons obtained from CD-1 mice on embryonic day 14. Cultured cells were treated with 0.1, 1.0, or 10.0 µg/mL of HT extract for 24 h, followed by fluorescence immunostaining for DA and 5HT-related receptors and transporters and some neuronal structural formation-associated molecules. RESULTS: HF extract dose-dependently upregulated the expression levels of selective DA and 5HT receptors, and downregulated the levels of DA and 5HT transporters. Moreover, HF extract increased the neurofilament light chain expression. CONCLUSION: These results suggest that HF may modulate DA and 5HT transmission, thereby affecting neurodevelopment.

9.
Phys Imaging Radiat Oncol ; 28: 100520, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38077272

RESUMEN

Background and purpose: Contouring of organs at risk is important for studying health effects following breast radiotherapy. However, manual contouring is time-consuming and subject to variability. The purpose of this study was to develop a deep learning-based method to automatically segment multiple structures on breast radiotherapy planning computed tomography (CT) images. Materials and methods: We used data from 118 patients, including 90 diagnostic CT scans with expert structure delineations for training and 28 breast radiotherapy planning CT images for testing. The radiotherapy CT images also had expert delineations for evaluating performance. We targeted a total of eleven organs at risk including five heart substructures. Segmentation performance was evaluated using the metrics of Dice similarity coefficient (DSC), overlap fraction, volume similarity, Hausdorff distance, mean surface distance, and dose. Results: The average DSC achieved on the radiotherapy planning images was 0.94 ± 0.02 for the whole heart, 0.96 ± 0.02 and 0.97 ± 0.01 for the left and right lung, 0.61 ± 0.10 for the esophagus, 0.81 ± 0.04 and 0.86 ± 0.04 for left and right atrium, 0.91 ± 0.02 and 0.84 ± 0.04 for left and right ventricle, and 0.21 ± 0.11 for the left anterior descending artery (LAD), respectively. Except for the LAD, the median difference in mean dose to these structures was small with absolute (relative) differences < 0.1 Gy (6 %). Conclusions: Except for the LAD, our method demonstrated excellent performance and can be generalized to segment additional structures of interest.

10.
Med Phys ; 39(12): 7593-602, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23231307

RESUMEN

PURPOSE: Fast and accurate transit portal dosimetry was investigated by developing a density-scaled layer model of electronic portal imaging device (EPID) and applying it to a clinical environment. METHODS: The model was developed for fast Monte Carlo dose calculation. The model was validated through comparison with measurements of dose on EPID using first open beams of varying field sizes under a 20-cm-thick flat phantom. After this basic validation, the model was further tested by applying it to transit dosimetry and dose reconstruction that employed our predetermined dose-response-based algorithm developed earlier. The application employed clinical intensity-modulated beams irradiated on a Rando phantom. The clinical beams were obtained through planning on pelvic regions of the Rando phantom simulating prostate and large pelvis intensity modulated radiation therapy. To enhance agreement between calculations and measurements of dose near penumbral regions, convolution conversion of acquired EPID images was alternatively used. In addition, thickness-dependent image-to-dose calibration factors were generated through measurements of image and calculations of dose in EPID through flat phantoms of various thicknesses. The factors were used to convert acquired images in EPID into dose. RESULTS: For open beam measurements, the model showed agreement with measurements in dose difference better than 2% across open fields. For tests with a Rando phantom, the transit dosimetry measurements were compared with forwardly calculated doses in EPID showing gamma pass rates between 90.8% and 98.8% given 4.5 mm distance-to-agreement (DTA) and 3% dose difference (DD) for all individual beams tried in this study. The reconstructed dose in the phantom was compared with forwardly calculated doses showing pass rates between 93.3% and 100% in isocentric perpendicular planes to the beam direction given 3 mm DTA and 3% DD for all beams. On isocentric axial planes, the pass rates varied between 95.8% and 99.9% for all individual beams and they were 98.2% and 99.9% for the composite beams of the small and large pelvis cases, respectively. Three-dimensional gamma pass rates were 99.0% and 96.4% for the small and large pelvis cases, respectively. CONCLUSIONS: The layer model of EPID built for Monte Carlo calculations offered fast (less than 1 min) and accurate calculation for transit dosimety and dose reconstruction.


Asunto(s)
Modelos Estadísticos , Método de Montecarlo , Radiometría/instrumentación , Radiometría/métodos , Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Pantallas Intensificadoras de Rayos X , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica
11.
Sci Total Environ ; 825: 154015, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189238

RESUMEN

The increasing amount of plastic waste has raised concerns about microplastics (MPs) in aquatic environments. MPs can be fragmented into nanoplastics that can pass through water treatment processes and into tap water; potentially threatening human health because of their high adsorption capacity for hazardous organic materials and their intrinsic toxicity. This case study investigates the identification, fate, and removal efficiency of MPs in Korean drinking water treatment plants. Two sites on the Nakdong River, two lake reservoirs (raw water sources), and four corresponding drinking water treatment plants were targeted to trace the amounts, types, and sizes of MPs throughout the treatment process. Monthly quantitative and qualitative analyses were conducted by chemical image mapping using micro-Fourier-transform infrared spectroscopy. MPs larger than 20 µm were detected, and their sizes and types were quantified using siMPle software. Overall, the number of MPs in the river sites (January to April and October to November) exceeded those in the reservoirs, but only slight differences in the number of MPs between rivers and lake reservoirs were detected from June to October. The annual average number of MPs in River A, B and Lack C and D was not distinctively different (2.65, 2.48, 2.46 and 1.87 particles/L, respectively). The majority of MPs found in raw waters were polyethylene (PE)/polypropylene (PP) (> 60%) and polyethylene terephthalate (PET)/poly(methyl methacrylate) (PMMA) (20%), in addition to polyamide (<10%) in the river and polystyrene (<10%) in the lake reservoirs. Approximately 70-80% of the MPs were removed by pre-ozonation/sedimentation; 81-88% of PE/PP was removed by this process. PET/PMMA was removed by filtration. Correlation of MPs with water quality parameters showed that the Mn concentration was moderately correlated with the MP abundance in rivers and lake reservoirs, excluding the lake with the lowest Mn concentration, while the total organic carbon was negatively correlated with the MP abundance in both rivers (A and B) and lake reservoir C.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Monitoreo del Ambiente , Humanos , Microplásticos , Plásticos/análisis , Polietileno/análisis , Polimetil Metacrilato/análisis , Polipropilenos/análisis , Contaminantes Químicos del Agua/análisis
12.
Phys Med Biol ; 67(3)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35026741

RESUMEN

Objective. We conducted a Monte Carlo study to comprehensively investigate the fetal dose resulting from proton pencil beam scanning (PBS) craniospinal irradiation (CSI) during pregnancy.Approach. The gestational-age dependent pregnant phantom series developed at the University of Florida (UF) were converted into DICOM-RT format (CT images and structures) and imported into a treatment planning system (TPS) (Eclipse v15.6) commissioned to a IBA PBS nozzle. A proton PBS CSI plan (prescribed dose: 36 Gy) was created on the phantoms. The TOPAS MC code was used to simulate the proton PBS CSI on the phantoms, for which MC beam properties at the nozzle exit (spot size, spot divergence, mean energy, and energy spread) were matched to IBA PBS nozzle beam measurement data. We calculated mean absorbed doses for 28 organs and tissues and whole body of the fetus at eight gestational ages (8, 10, 15, 20, 25, 30, 35, and 38 weeks). For contextual purposes, the fetal organ/tissue doses from the treatment planning CT scan of the mother's head and torso were estimated using the National Cancer Institute dosimetry system for CT (NCICT, Version 3) considering a low-dose CT protocol (CTDIvol: 8.97 mGy).Main results. The majority of the fetal organ/tissue doses from the proton PBS CSI treatment fell within a range of 3-6 mGy. The fetal organ/tissue doses for the 38 week phantom showed the largest variation with the doses ranging from 2.9 mGy (adrenals) to 8.2 mGy (eye lenses) while the smallest variation ranging from 3.2 mGy (oesophagus) to 4.4 mGy (brain) was observed for the doses for the 20 week phantom. The fetal whole-body dose ranged from 3.7 mGy (25 weeks) to 5.8 mGy (8 weeks). Most of the fetal doses from the planning CT scan fell within a range of 7-13 mGy, approximately 2-to-9 times lower than the fetal dose equivalents of the proton PBS CSI treatment (assuming a quality factor of 7).Significance. The fetal organ/tissue doses observed in the present work will be useful for one of the first clinically informative predictions on the magnitude of fetal dose during proton PBS CSI during pregnancy.


Asunto(s)
Irradiación Craneoespinal , Terapia de Protones , Femenino , Feto/diagnóstico por imagen , Humanos , Método de Montecarlo , Fantasmas de Imagen , Embarazo , Terapia de Protones/métodos , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
13.
Biomed Phys Eng Express ; 9(1)2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562506

RESUMEN

Monte Carlo (MC) methods are considered the gold-standard approach to dose estimation for normal tissues outside the treatment field (out-of-field) in proton therapy. However, the physics of secondary particle production from high-energy protons are uncertain, particularly for secondary neutrons, due to challenges in performing accurate measurements. Instead, various physics models have been developed over the years to reenact these high-energy interactions based on theory. It should thus be acknowledged that MC users must currently accept some unknown uncertainties in out-of-field dose estimates. In the present study, we compared three MC codes (MCNP6, PHITS, and TOPAS) and their available physics models to investigate the variation in out-of-field normal tissue dosimetry for pencil beam scanning proton therapy patients. Total yield and double-differential (energy and angle) production of two major secondary particles, neutrons and gammas, were determined through irradiation of a water phantom at six proton energies (80, 90, 100, 110, 150, and 200 MeV). Out-of-field normal tissue doses were estimated for intracranial irradiations of 1-, 5-, and 15-year-old patients using whole-body computational phantoms. Notably, the total dose estimates for each out-of-field organ varied by approximately 25% across the three codes, independent of its distance from the treatment volume. Dose discrepancies amongst the codes were linked to the utilized physics model, which impacts the characteristics of the secondary radiation field. Using developer-recommended physics, TOPAS produced both the highest neutron and gamma doses to all out-of-field organs from all examined conditions; this was linked to its highest yields of secondary particles and second hardest energy spectra. Subsequent results when using other physics models found reduced yields and energies, resulting in lower dose estimates. Neutron dose estimates were the most impacted by physics model choice, and thus the variation in out-of-field dose estimates may be even larger than 25% when considering biological effectiveness.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Radiometría/métodos , Protones , Dosificación Radioterapéutica , Método de Montecarlo
14.
Cell Adh Migr ; 16(1): 72-93, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35615953

RESUMEN

To investigate a novel function of Dipterocarpus tuberculatus on focal cell adhesion stimulation, alterations to the regulation of focal cell adhesion-related factors were analyzed in NHDF cells and a calvarial defect rat model after treatment with methanol extracts of D. tuberculatus (MED). MED contained gallic acid, caffeic acid, ellagic acid, and naringenin in high concentrations. The proliferation activity, focal cell adhesion ability, adhesion receptors-mediated signaling pathway in NHDF cells were increased by MED. Also, a dense adhered tissue layer and adherent cells on MED-coated titanium plate (MEDTiP) surfaces were detected during regeneration of calvarial bone. The results of the present study provide novel evidence that MED may stimulate focal cell adhesion in NHDF cells and a calvarial defect rat model.


Asunto(s)
Dipterocarpaceae , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Adhesión Celular , Dipterocarpaceae/química , Proteína-Tirosina Quinasas de Adhesión Focal , Adhesiones Focales , Cadenas Ligeras de Miosina , Fosforilación , Ratas
15.
Phys Imaging Radiat Oncol ; 19: 138-144, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34485719

RESUMEN

BACKGROUND AND PURPOSE: Quantifying radiation dose to cardiac substructures is important for research on the etiology and prevention of complications following radiotherapy; however, segmentation of substructures is challenging. In this study we demonstrate the application of our atlas-based automatic segmentation method to breast cancer radiotherapy plans for generating radiation doses in support of late effects research. MATERIAL AND METHODS: We applied our segmentation method to contour heart substructures on the computed tomography (CT) images of 70 breast cancer patients who received external photon radiotherapy. Two cardiologists provided manual segmentation of the whole heart (WH), left/right atria, left/right ventricles, and left anterior descending artery (LAD). The automatically contours were compared with manual delineations to evaluate similarity in terms of geometry and dose. RESULTS: The mean Dice similarity coefficient between manual and automatic segmentations was 0.96 for the WH, 0.65 to 0.82 for the atria and ventricles, and 0.06 for the LAD. The mean average surface distance was 1.2 mm for the WH, 3.4 to 4.1 mm for the atria and ventricles, and 6.4 mm for the LAD. We found the dose to the cardiac substructures based on our automatic segmentation agrees with manual segmentation within expected observer variability. For left breast patients, the mean absolute difference in mean dose was 0.1 Gy for the WH, 0.2 to 0.7 Gy for the atria and ventricles, and 1.8 Gy for the LAD. For right breast patients, these values were 0.0 Gy, 0.1 to 0.4 Gy, and 0.4 Gy, respectively. CONCLUSION: Our automatic segmentation method will facilitate the development of radiotherapy prescriptive criteria for mitigating cardiovascular complications.

16.
Biochim Biophys Acta ; 1793(11): 1656-68, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19748528

RESUMEN

Microglia contributes significantly to brain tumor mass, particularly in astrocytic gliomas. Here, we examine the cytotoxic effects of soluble components secreted from microglia culture on glioma cells. Microglia conditioned culture medium (MCM) actively stimulated apoptotic death of glioma cells, and the effects of MCM prepared from LPS- or IFN-gamma-activated microglia were more pronounced. The cytotoxic effects were glioma-specific in that primary cultured rat astrocytes were not affected by MCM. A donor of peroxynitrite induced glioma-specific cell death. In addition, NO synthase inhibitor suppressed glioma cell death induced by activated MCM, indicating that NO is one of the key molecules responsible for glioma cytotoxicity mediated by activated MCM. However, since unstimulated resting microglia produces low or very limited level of NO, MCM may contain other critical molecule(s) that induce glioma apoptosis. To identify the proteins secreted in MCM, proteomic analysis was performed on control or activated medium. Among over 200 protein spots detected by Coomassie blue staining, we identified 26 constitutive and 28 LPS- or IFN-gamma-regulated MCM proteins. Several cathepsin proteases were markedly expressed, which were reduced upon activation. In particular, suppression of cathepsin B by the chemical inhibitors significantly reversed MCM-induced glioma cell death, implying a critical role of this protease in cytotoxicity. Our findings provide evidence on the functional implications of specific microglial-secreted proteins in glioma cytotoxicity, as well as a basis to develop a proteomic databank of both basal and activation-related proteins in microglia.


Asunto(s)
Apoptosis , Catepsina B/metabolismo , Glioma/metabolismo , Microglía/metabolismo , Óxido Nítrico/metabolismo , Animales , Antivirales/farmacología , Catepsina B/antagonistas & inhibidores , Medios de Cultivo Condicionados/farmacología , Inhibidores Enzimáticos/farmacología , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratas , Ratas Sprague-Dawley
17.
Phys Med Biol ; 65(17): 175015, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32726766

RESUMEN

Monte Carlo (MC) radiation transport methods are used for dose calculation as 'gold standard.' However, the method is computationally time-consuming and thus impractical for normal tissue dose reconstructions for the large number of proton therapy patients required for epidemiologic investigations of late health effects. In the present study, we developed a new dose calculation method for the rapid reconstruction of out-of-field neutron dose to patients undergoing pencil beam scanning (PBS) proton therapy. The new dose calculation method is based on neutron dose voxel kernels (DVKs) generated by MC simulations of a proton pencil beam irradiating a water phantom (60 × 60 × 300 cm3), which was conducted using a MC proton therapy simulation code, TOPAS. The DVKs were generated for 19 beam energies (from 70 to 250 MeV with the 10 MeV interval) and three range shifter thicknesses (1, 3, and 5 cm). An in-house program was written in C++ to superimpose the DVKs onto a patient CT images according to proton beam characteristics (energy, position, and direction) available in treatment plans. The DVK dose calculation method was tested by calculating organ/tissue-specific neutron doses of 1- and 5-year-old whole-body computational phantoms where intracranial and craniospinal irradiations were simulated. The DVK-based doses generally showed reasonable agreement with those calculated by direct MC simulations with a detailed PBS model that were previously published, with differences mostly less than 30% and 10% for the intracranial and craniospinal irradiations, respectively. The computation time of the DVK method for one patient ranged from 1 to 30 min on a single CPU core of a personal computer, demonstrating significant improvement over the direct MC dose calculation requiring several days on high-performance computing servers. Our DVK-based dose calculation method will be useful when dosimetry is needed for the large number of patients such as for epidemiologic or clinical research.


Asunto(s)
Neutrones , Terapia de Protones/métodos , Dosis de Radiación , Algoritmos , Preescolar , Irradiación Craneoespinal , Humanos , Lactante , Método de Montecarlo , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Agua
18.
Phys Med Biol ; 65(5): 055001, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31968326

RESUMEN

The purpose of this study is to propose a reconstruction method of a target and its neighborhood, representative of the moment of radiotherapy delivery, based on differences in its transit images between the time of planning computed tomography (pCT) and the time of treatment beam delivery. To validate the method, a lung phantom with a target object was constructed, and CT-scanned before and after making a shift of the target. The latter scan was intended to simulate a potential organ movement at the time of treatment, and to serve as ground-truth images. Treatment planning using arc-beam delivery was done on the first pCT images. The planned beams were irradiated to the phantom after the shift, while cine transit images were acquired. Cine transit images were also calculated through the pCT images before the shift. From the ratio of the measured and calculated transit images, the amount of image changes due to the organ movement between the time of pCT and that of treatment was three-dimensionally reconstructed. By adding the reconstructed images to the pCT images before the shift, the CT images of the phantom at the time of the beam delivery were generated and compared with the ground truth images. The phantom after the shift was also scanned by on-board cone-beam computer tomography (CBCT) and reconstructed from the measured transit images (MVCT) for comparison. The proposed method reconstructed images that are very close to the ground-truth images in the volume and HU values of the target and the dose-volume coverage of the target and lung. Similar agreement was not found in the CBCT and MVCT images. The method may be used for 4D target image reconstruction, and, combined with the reconstructed image of un-irradiated areas, may offer clinically useful images of the entire region of interest.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Neoplasias Pulmonares/radioterapia , Movimiento (Física) , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Humanos , Movimiento , Fantasmas de Imagen
19.
Mol Diagn Ther ; 24(5): 579-592, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32676933

RESUMEN

INTRODUCTION: Next-generation sequencing (NGS) panels have recently been introduced to efficiently detect genetic variations in hematologic malignancies. OBJECTIVES: Our aim was to evaluate the performance of the commercialized Oncomine™ myeloid research assay (OMA) for myeloid neoplasms. METHODS: Certified reference materials and clinical research samples were used, including 60 genomic DNA and 56 RNA samples. NGS was performed using OMA, which enables the interrogation of 40 target genes, 29 gene fusions, and five expression target genes with five expression control genes by the Ion S5 XL Sequencer. The analyzed data were compared with clinical data using karyotyping, reverse transcription polymerase chain reaction (PCR), fluorescence in situ hybridization, Sanger sequencing, customized NGS panel, and fragment analysis. RESULTS: All targets of reference materials were detected except three (two ASXL1 and one CEBPA) mutations, which we had not expected OMA to detect. In clinical search samples, OMA satisfactorily identified DNA variants, including 90 single nucleotide variants (SNVs), 48 small insertions and deletions (indels), and eight FLT3 internal tandem duplications (ITDs) (Kappa agreement 0.938). The variant allele frequencies of SNVs and indels measured by OMA correlated well with clinical data, whereas those of FLT3-ITDs were significantly lower than with fragment analysis (P = 0.008). Together, OMA showed strong ability to identify RNA gene fusions (Kappa agreement 0.961), except one RUNX1-MECOM. The MECOM gene was highly expressed in all five samples with MECOM-associated rearrangements, including inv(3), t(3;3), and t(3;21). CONCLUSION: OMA revealed excellent analytical and potential clinical performance and could be a good replacement for conventional molecular tests.


Asunto(s)
Técnicas de Diagnóstico Molecular , Trastornos Mieloproliferativos/diagnóstico , Biomarcadores de Tumor , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Trastornos Mieloproliferativos/etiología , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
20.
Phys Med Biol ; 54(17): 5223-36, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19671973

RESUMEN

A straightforward and accurate method was developed to verify the delivery of intensity-modulated radiation therapy (IMRT) and to reconstruct the dose in a patient. The method is based on a computational algorithm that linearly describes the physical relationship between beamlets and dose-scoring voxels in a patient and the dose image from an electronic portal imaging device (EPID). The relationship is expressed in the form of dose response functions (responses) that are quantified using Monte Carlo (MC) particle transport techniques. From the dose information measured by the EPID the received patient dose is reconstructed by inversely solving the algorithm. The unique and novel non-iterative feature of this algorithm sets it apart from many existing dose reconstruction methods in the literature. This study presents the algorithm in detail and validates it experimentally for open and IMRT fields. Responses were first calculated for each beamlet of the selected fields by MC simulation. In-phantom and exit film dosimetry were performed on a flat phantom. Using the calculated responses and the algorithm, the exit film dose was used to inversely reconstruct the in-phantom dose, which was then compared with the measured in-phantom dose. The dose comparison in the phantom for all irradiated fields showed a pass rate of higher than 90% dose points given the criteria of dose difference of 3% and distance to agreement of 3 mm.


Asunto(s)
Dosis de Radiación , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/instrumentación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA