Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(2): 1277-1285, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38171366

RESUMEN

Achieving a low contact resistance has been an important issue in the design of two-dimensional (2D) semiconductor-metal interfaces. The metal contact resistance is dominated by interfacial interactions. Here, we systematically investigate 2D semiconductor-metal interfaces formed by transferring monolayer MoS2 onto prefabricated metal surfaces, such as Au and Pd, using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and Raman spectroscopy. In contrast to the MoS2/HOPG interface, the interfaces of MoS2/Au and MoS2/Pd feature the formation of weak covalent bonds. The XPS spectra reveal distinct peak positions for S-Au and S-Pd, indicating a higher doping concentration at the S-Au interface. This difference is a key factor in understanding the electronic interactions at the metal-MoS2 interfaces. Additionally, we observe that the metal surface roughness is a critical determinant of the adhesion behavior of transferred monolayer MoS2, resulting in different strains and doping concentrations. The strain on transferred MoS2 increases with an increase in substrate roughness. However, the strain is released when the roughness of metal surface surpasses a certain threshold. The dependence of the contact material and the influence of the substrate roughness on the contact interface provide critical information for improving 2D semiconductor-metal contacts and device performance.

2.
Adv Mater ; : e2402373, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935940

RESUMEN

One of the exotic expectations in the 2D curved spacetime is the geometric potential from the curvature of the 2D space, still possessing unsolved fundamental questions through Dirac quantization. The atomically thin 2D materials are promising for the realization of the geometric potential, but the geometric potential in 2D materials is not identified experimentally. Here, the curvature-induced ring-patterned bound states are observed in structurally deformed 2D semiconductors and formulated the modified geometric potential for the curvature effect, which demonstrates the ring-shape bound states with angular momentum. The formulated modified geometric potential is analogous to the effective potential of a rotating charged black hole. Density functional theory and tight-binding calculations are performed, which quantitatively agree well with the results of the modified geometric potential. The modified geometric potential is described by modified Gaussian and mean curvatures, corresponding to the curvature-induced changes in spin-orbit interaction and band gap, respectively. Even for complex structural deformation, the geometric potential solves the complexity, which aligns well with experimental results. The understanding of the modified geometric potential provides us with an intuitive clue for quantum transport and a key factor for new quantum applications such as valleytronics, spintronics, and straintronics in 2D semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA