Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Photochem Photobiol Sci ; 22(9): 2093-2104, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37303026

RESUMEN

A full understanding concerning the photophysical properties of a fluorescent label is crucial for a reliable and predictable performance in biolabelling applications. This holds true not only for the choice of a fluorophore in general, but also for the correct interpretation of data, considering the complexity of biological environments. In the frame of a case study involving inflammation imaging, we report the photophysical characterization of four fluorescent S100A9-targeting compounds in terms of UV-vis absorption and photoluminescence spectroscopy, fluorescence quantum yields (ΦF) and excited state lifetimes (τ) as well as the evaluation of the radiative and non-radiative rate constants (kr and knr, respectively). The probes were synthesized based on a 2-amino benzimidazole-based lead structure in combination with commercially available dyes, covering a broad color range from green (6-FAM) over orange (BODIPY-TMR) to red (BODIPY-TR) and near-infrared (Cy5.5) emission. The effect of conjugation with the targeting structure was addressed by comparison of the probes with their corresponding dye-azide precursors. Additionally, the 6-FAM and Cy5.5 probes were measured in the presence of murine S100A9 to determine whether protein binding influences their photophysical properties. An interesting rise in ΦF upon binding of 6-FAM-SST177 to murine S100A9 enabled the determination of its dissociation equilibrium constant, reaching up to KD = 324 nM. This result gives an outlook for potential applications of our compounds in S100A9 inflammation imaging and fluorescence assay developments. With respect to the other dyes, this study demonstrates how diverse microenvironmental factors can severely impair their performance while rendering them poor performers in biological media, showing that a preliminary photophysical screening is key to assess the suitability of a particular luminophore.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Animales , Ratones , Colorantes Fluorescentes/química , Compuestos de Boro/química , Carbocianinas , Calgranulina B
2.
Arch Pharm (Weinheim) ; 356(6): e2200665, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949271

RESUMEN

HCN4 channels are considered to be a promising target for cardiac pathologies, epilepsy, and multiple sclerosis. However, there are no subtype-selective HCN channel blockers available, and only a few compounds are reported to display subtype preferences, one of which is EC18 (cis-1). Herein, we report the optimized synthetic route for the preparation of EC18 and its evaluation in three different pharmacological models, allowing us to assess its activity on cardiac function, thalamocortical neurons, and immune cells.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canales de Potasio , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Relación Estructura-Actividad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Neuronas/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674884

RESUMEN

The homotrimeric P2X7 receptor (P2X7R) is expressed by virtually all cells of the innate and adaptive immune system and plays a crucial role in various pathophysiological processes such as autoimmune and neurodegenerative diseases, inflammation, neuropathic pain and cancer. Consequently, the P2X7R is considered a promising target for therapy and diagnosis. As the development of tracers comes hand-in-hand with the development of potent and selective receptor ligands, there is a rising number of PET tracers available in preclinical and clinical studies. This review analyzes the development of P2X7R positron emission tomography (PET) tracers and their potential in various PET imaging applications.


Asunto(s)
Neoplasias , Enfermedades Neurodegenerativas , Humanos , Receptores Purinérgicos P2X7 , Tomografía de Emisión de Positrones/métodos , Inflamación/diagnóstico por imagen , Inflamación/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
4.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35682964

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addition, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1ß; IL-6; INF-α; INF-ß) were characterized in C57Bl/6J mice. Thus, the hyperpolarization-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterologous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current density; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1ß. It was found that Ih parameters were differentially altered by the application of the two cytokines to thalamic cells, while IL-1ß increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolarized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hyperpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1ß and INF-α increased and reduced oscillatory bursting, respectively. We conclude that HCN channels are not directly modulated by trace metals and divalent cation chelators but are subject to modulation by different MS-related cytokines.


Asunto(s)
Enfermedades Desmielinizantes , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Animales , Cationes Bivalentes , Quelantes/farmacología , Cobre , Citocinas , Enfermedades Desmielinizantes/inducido químicamente , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ratones , Ratones Endogámicos C57BL
5.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408685

RESUMEN

The adenosine A3 receptor is a promising target for treating and diagnosing inflammation and cancer. In this paper, a series of bicyclo[3.1.0]hexane-based nucleosides was synthesized and evaluated for their P1 receptor affinities in radioligand binding studies. The study focused on modifications at 1-, 2-, and 6-positions of the purine ring and variations of the 5'-position at the bicyclo[3.1.0]hexane moiety, closing existing gaps in the structure-affinity relationships. The most potent derivative 30 displayed moderate A3AR affinity (Ki of 0.38 µM) and high A3R selectivity. A subset of compounds varied at 5'-position was further evaluated in functional P2Y1R assays, displaying no off-target activity.


Asunto(s)
Hexanos , Receptor de Adenosina A3 , Animales , Células CHO , Cricetinae , Ligandos , Nucleósidos/química , Ensayo de Unión Radioligante , Receptor de Adenosina A3/química , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 45: 128137, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34048882

RESUMEN

The Gq-coupled P2Y6 receptor (P2Y6R) is a component of the purinergic signaling system and functions in inflammatory, cardiovascular and metabolic processes. UDP, the native P2Y6R agonist and P2Y14R partial agonist, is subject to hydrolysis by ectonucleotidases. Therefore, we have synthesized UDP/CDP analogues containing a stabilizing α,ß-methylene bridge as P2Y6R agonists and identified compatible affinity-enhancing pyrimidine modifications. A distal binding region on the receptor was explored with 4-benzyloxyimino cytidine 5'-diphosphate analogues and their potency determined in a calcium mobilization assay. A 4-trifluoromethyl-benzyloxyimino substituent in 25 provided the highest human P2Y6R potency (MRS4554, 0.57 µM), and a 5-fluoro substitution of the cytosine ring in 28 similarly enhanced potency, with >175- and 39-fold selectivity over human P2Y14R, respectively. However, 3-alkyl (31-33, 37, 38), ß-d-arabinofuranose (39) and 6-aza (40) substitution prevented P2Y6R activation. Thus, we have identified new α,ß-methylene bridged N4-extended CDP analogues as P2Y6R agonists that are highly selective over the P2Y14R.


Asunto(s)
Difosfonatos/farmacología , Nucleótidos de Pirimidina/farmacología , Receptores Purinérgicos P2/metabolismo , Difosfonatos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Nucleótidos de Pirimidina/síntesis química , Nucleótidos de Pirimidina/química , Relación Estructura-Actividad
7.
Org Biomol Chem ; 13(8): 2407-22, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25566983

RESUMEN

CCR2 and CCR5 receptors play a key role in the development and progression of several inflammatory, cardiovascular and autoimmune diseases. Therefore, dual targeting of both receptors appeals as a promising strategy for the treatment of such complex, multifactorial disorders. Herein we report on the design, synthesis and biological evaluation of benzo[7]annulene- and [7]annulenothiophene-based selective and dual CCR2 and CCR5 receptor antagonists. Intermediates were designed in such a way that diversification could be introduced at the end of the synthesis. Starting from the lead compound TAK-779 (1), the quaternary ammonium moiety was exchanged by different non-charged moieties, the 4-methylphenyl moiety was extensively modified and the benzo[7]annulene core was replaced bioisosterically by the [7]annulenothiophene system. The naphthyl derivative 9h represents the most promising dual antagonist (Ki (CCR2) = 25 nM, IC50 (CCR5) = 17 nM), whereas the 6-isopropoxy-3-pyridyl and 4-methoxycarbonylphenyl derivatives 9k and 9r show more than 20-fold selectivity for the CCR2 (Ki = 19 nM) over the CCR5 receptor.


Asunto(s)
Antagonistas de los Receptores CCR5/síntesis química , Antagonistas de los Receptores CCR5/farmacología , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/farmacología , Receptores CCR2/antagonistas & inhibidores , Tiofenos/química , Tiofenos/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Antagonistas de los Receptores CCR5/química , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Hidrocarburos Policíclicos Aromáticos/síntesis química , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Relación Estructura-Actividad , Tiofenos/síntesis química
8.
Bioorg Med Chem ; 23(14): 4034-49, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25766632

RESUMEN

Activation of chemokine CC receptors subtype 2 (CCR2) plays an important role in chronic inflammatory processes such as atherosclerosis, multiple sclerosis and rheumatoid arthritis. A diverse set of spirocyclic butanamides 4 (N-benzyl-4-(3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamides) was prepared by different combination of spirocyclic piperidines 8 (3,4-dihydrospiro[[2]benzopyran-1,4'-piperidines]) and γ-halobutanamides 11. A key step in the synthesis of spirocyclic piperidines 8 was an Oxa-Pictet-Spengler reaction of ß-phenylethanols 5 with piperidone acetal 6. The substituted γ-hydroxybutanamides 11c-e were prepared by hydroxyethylation of methyl acetates 13 with ethylene sulfate giving the γ-lactones 14c and 14e. Aminolysis of the γ-lactones 14c and 14e with benzylamines provided the γ-hydroxybutanamides 15c-e, which were converted into the bromides 11c-e by an Appel reaction using polymer-bound PPh3. In radioligand binding assays the spirocyclic butanamides 4 did not displace the iodinated radioligand (125)I-CCL2 from the human CCR2. However, in the Ca(2+)-flux assay using human CCR2 strong antagonistic activity of butanamides 4 was detected. Analysis of the IC50-values led to clear relationships between the structure and the inhibition of the Ca(2+)-flux. 4g (4-(3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)-N-[3,5-bis(trifluoromethylbenzyl)]-2-(4-fluorophenyl)butanamide) and 4o (N-[3,5-bis(trifluoromethyl)benzyl]-2-cyclopropyl-4-(3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide) represent the most potent CCR2 antagonists with IC50-values of 89 and 17nM, respectively. Micromolar activities were found in the ß-arrestin recruitment assay with murine CCR2, but the structure-activity-relationships detected in the Ca(2+)-flux assay were confirmed.


Asunto(s)
Receptores CCR2/antagonistas & inhibidores , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Relación Estructura-Actividad , Arrestinas/metabolismo , Calcio/metabolismo , Línea Celular/efectos de los fármacos , Técnicas de Química Sintética , Evaluación Preclínica de Medicamentos/métodos , Humanos , Concentración 50 Inhibidora , Radioisótopos de Yodo , Ensayo de Unión Radioligante , Receptores CCR2/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/metabolismo , beta-Arrestinas
9.
Org Biomol Chem ; 12(1): 177-86, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24217712

RESUMEN

Chemokine receptor 5 (CCR5) antagonists provide a new therapeutic approach in the treatment of HIV-1 (AIDS). TAK-779 displays high affinity and selectivity for the CCR5 receptor and serves as a lead compound for the development of further antagonists. In order to increase the oral bioavailability replacement of the quaternary ammonium structure by a tertiary amine and modification of the 4-methylphenyl moiety were envisaged. Herein, a new synthetic strategy for the development of TAK-779 analogs by late stage diversification is reported. The Suzuki-Miyaura cross-coupling reactions allowed various modifications of the central amide building block 3 at the end of the synthesis leading to compounds 2f and 2h with a promising CCR5 binding affinity.


Asunto(s)
Amidas/síntesis química , Compuestos de Amonio Cuaternario/síntesis química , Amidas/química , Amidas/farmacología , Antagonistas de los Receptores CCR5 , Relación Dosis-Respuesta a Droga , Estructura Molecular , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Relación Estructura-Actividad
10.
J Org Chem ; 78(11): 5579-86, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23642160

RESUMEN

A rapid synthesis of thiophene-based TAK-779 analogues 1 is reported using a late-stage diversification strategy. At the end of the synthesis, the key building block 2, which was prepared in six steps from thiophene, was arylated regioselectively at the α-position directly with iodoarenes. Since 2 offers several reactive positions, various established catalyst systems were tested. It was found that Crabtree catalyst (an Ir catalyst) converted efficiently and selectively the thiophene system 2 into 2-aryl-substituted compounds 9. The direct C-H arylation of 2 with electron-rich iodoarenes led to high yields, whereas electron-deficient iodoarenes required longer reaction times for complete conversion. A small set of diverse amides 1 was synthesized by hydrolysis of 9 and subsequent HATU coupling with primary amines 4.


Asunto(s)
Amidas/síntesis química , Compuestos de Amonio Cuaternario/síntesis química , Tiofenos/química , Amidas/química , Estructura Molecular , Compuestos de Amonio Cuaternario/química
11.
ACS Omega ; 8(15): 14097-14112, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091407

RESUMEN

We herein disclose the microwave-assisted synthesis of previously unreported 6-methoxy-5,6-dihydro-5-azapurines, whose purine-like scaffold is promising for drug discovery. The method is simple, fast, and relies on easily accessible reagents such as trimethyl orthoformate, acetic acid, and aminotriazole-derived N,N'-disubstituted formamidines. The preliminary biological evaluation revealed that selected representatives of synthesized 6-methoxy-5,6-dihydro-5-azapurines dose-dependently reduce the viability of HepG2 and A549 cancer cells having little to no influence on five tested purinergic receptors.

12.
J Med Chem ; 65(16): 11291-11308, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35930402

RESUMEN

The orthosteric ATP-binding site of the P2X receptors is poorly understood. Only a few compounds were well characterized for their P2X receptor functional activity and subtype selectivity. This study represents the first fully functional characterization of various ATP derivatives combined with in silico studies to advance the understanding of SARs at the orthosteric binding sites of P2X receptors leading to the identification of 2-chloro-3-trifluoromethylbenzoyl ATP ester as a novel pan-P2X receptor agonist and several subtype-selective P2X receptor agonists. Furthermore, esterification of both hydroxyl functions of ATP using 1-naphthoic acid has led to compound 26 acting as an antagonist at P2X1-4 and P2X2/3 receptors and an agonist at P2X7 receptors. This particular ATP derivative will allow interrogating the P2X7 receptor function while antagonizing all other P2X receptor subtypes and therefore serve as a valuable pharmacological tool in the future.


Asunto(s)
Adenosina Trifosfato , Canales Iónicos , Adenosina Trifosfato/metabolismo , Sitios de Unión , Canales Iónicos/metabolismo , Dominios Proteicos , Receptores Purinérgicos P2X7/metabolismo , Relación Estructura-Actividad
13.
J Med Chem ; 65(18): 12292-12318, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36084304

RESUMEN

Drug development efforts that focused on single targets failed to provide effective treatment for Alzheimer's disease (AD). Therefore, we designed cholinesterase inhibition (ChEI)-based multi-target-directed ligands (MTDLs) to simultaneously target AD-related receptors. We built a library of 70 compounds, sequentially screened for ChEI, and determined σ1R, σ2R, NMDAR-GluN2B binding affinities, and P2X7R antagonistic activities. Nine fulfilled in silico drug-likeness criteria and did not display toxicity in three cell lines. Seven displayed cytoprotective activity in two stress-induced cellular models. Compared to donepezil, six showed equal/better synaptic protection in a zebrafish model of acute amyloidosis-induced synaptic degeneration. Two P2X7R antagonists alleviated the activation state of microglia in vivo. Permeability studies were performed, and four did not inhibit CYP450 3A4, 2D6, and 2C9. Therefore, four ChEI-based lead MTDLs are promising drug candidates for synaptic integrity protection and could serve as disease-modifying AD treatment. Our study also proposes zebrafish as a useful preclinical tool for drug discovery and development.


Asunto(s)
Enfermedad de Alzheimer , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Colinesterasas , Donepezilo/uso terapéutico , Plomo/uso terapéutico , Ligandos , Pez Cebra/metabolismo
14.
J Med Chem ; 65(3): 2409-2433, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35080883

RESUMEN

We recently reported N4-substituted 3-methylcytidine-5'-α,ß-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , Nucleótidos de Citosina/farmacología , Difosfonatos/farmacología , Inhibidores Enzimáticos/farmacología , 5'-Nucleotidasa/metabolismo , Adulto , Nucleótidos de Citosina/síntesis química , Nucleótidos de Citosina/metabolismo , Difosfonatos/síntesis química , Difosfonatos/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/metabolismo , Humanos , Masculino , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/enzimología , Tonsila Palatina/enzimología , Unión Proteica , Relación Estructura-Actividad
15.
ChemistryOpen ; 10(9): 922-927, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34553828

RESUMEN

This study identified the isoindolone ring as a scaffold for novel agents against Trypanosoma brucei rhodesiense and explored the structure-activity relationships of various aromatic ring substitutions. The compounds were evaluated in an integrated in vitro screen. Eight compounds exhibited selective activity against T. b. rhodesiense (IC50 <2.2 µm) with no detectable side activity against T. cruzi and Leishmania infantum. Compound 20 showed low nanomolar potency against T. b. rhodesiense (IC50 =40 nm) and no toxicity against MRC-5 and PMM cell lines and may be regarded as a new lead template for agents against T. b. rhodesiense. The isoindolone-based compounds have the potential to progress into lead optimization in view of their highly selective in vitro potency, absence of cytotoxicity and acceptable metabolic stability. However, the solubility of the compounds represents a limiting factor that should be addressed to improve the physicochemical properties that are required to proceed further in the development of in vivo-active derivatives.


Asunto(s)
Isoindoles/farmacología , Tripanocidas/farmacología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Animales , Línea Celular , Estabilidad de Medicamentos , Femenino , Humanos , Isoindoles/síntesis química , Isoindoles/metabolismo , Isoindoles/toxicidad , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Solubilidad , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Tripanocidas/toxicidad
16.
Eur J Med Chem ; 226: 113838, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34571173

RESUMEN

The P2X7 receptor (P2X7R) stands out among the purinergic receptors due to its strong involvement in the regulation of tumor growth and metastasis formation as well as in innate immune responses and afferent signal transmission. Numerous studies have pointed out the beneficial effects of P2X7R antagonism for the treatment of a variety of cancer types, inflammatory diseases, and chronic pain. Herein we describe the development of novel P2X7R antagonists, incorporating piperazine squaric diamides as a central element. Besides improving the antagonists' potency from pIC50 values of 5.7-7.6, ADME properties (logD7.4 value, plasma protein binding, in vitro metabolic stability) of the generated compounds were investigated and optimized to provide novel P2X7R antagonists with drug-like properties. Furthermore, docking studies revealed the antagonists binding to the allosteric binding pocket in two distinct binding poses, depending on the substitution of the central piperazine moiety.


Asunto(s)
Ciclobutanos/farmacología , Diamida/farmacología , Piperazina/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X/metabolismo , Ciclobutanos/síntesis química , Ciclobutanos/química , Diamida/síntesis química , Diamida/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Piperazina/síntesis química , Piperazina/química , Antagonistas del Receptor Purinérgico P2X/síntesis química , Antagonistas del Receptor Purinérgico P2X/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
ChemMedChem ; 16(6): 966-975, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33078573

RESUMEN

Neglected tropical diseases remain among the most critical public health concerns in Africa and South America. The drug treatments for these diseases are limited, which invariably leads to fatal cases. Hence, there is an urgent need for new antitrypanosomal drugs. To address this issue, a large number of diverse heterocyclic compounds were prepared. Straightforward synthetic approaches tolerated pre-functionalized structures, giving rise to a structurally diverse set of analogs. We report on a set of 57 heterocyclic compounds with selective activity potential against kinetoplastid parasites. In general, 29 and 19 compounds of the total set could be defined as active against Trypanosoma cruzi and T. brucei brucei, respectively (antitrypanosomal activities <10 µM). The present work discusses the structure-activity relationships of new fused-ring scaffolds based on imidazopyridine/pyrimidine and furopyridine cores. This library of compounds shows significant potential for anti-trypanosomiases drug discovery.


Asunto(s)
Imidazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Piridinas/síntesis química , Piridinas/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
18.
ChemMedChem ; 16(4): 640-645, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33205603

RESUMEN

Herein we report the design and synthesis of a series of highly selective CCR2 antagonists as 18 F-labeled PET tracers. The derivatives were evaluated extensively for their off-target profile at 48 different targets. The most potent and selective candidate was applied in vivo in a biodistribution study, demonstrating a promising profile for further preclinical development. This compound represents the first potential nonpeptidic PET tracer for the imaging of CCR2 receptors.


Asunto(s)
Desarrollo de Medicamentos , Radiofármacos/farmacología , Receptores CCR2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Tomografía de Emisión de Positrones , Radiofármacos/química , Relación Estructura-Actividad
19.
Cells ; 8(9)2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480740

RESUMEN

High-content and high-throughput digital microscopes have generated large image sets in biological experiments and clinical practice. Automatic image analysis techniques, such as cell counting, are in high demand. Here, cell counting was treated as a regression problem using image features (phenotypes) extracted by deep learning models. Three deep convolutional neural network models were developed to regress image features to their cell counts in an end-to-end way. Theoretically, ensembling imaging phenotypes should have better representative ability than a single type of imaging phenotype. We implemented this idea by integrating two types of imaging phenotypes (dot density map and foreground mask) extracted by two autoencoders and regressing the ensembled imaging phenotypes to cell counts afterwards. Two publicly available datasets with synthetic microscopic images were used to train and test the proposed models. Root mean square error, mean absolute error, mean absolute percent error, and Pearson correlation were applied to evaluate the models' performance. The well-trained models were also applied to predict the cancer cell counts of real microscopic images acquired in a biological experiment to evaluate the roles of two colorectal-cancer-related genes. The proposed model by ensembling deep imaging features showed better performance in terms of smaller errors and larger correlations than those based on a single type of imaging feature. Overall, all models' predictions showed a high correlation with the true cell counts. The ensembling-based model integrated high-level imaging phenotypes to improve the estimation of cell counts from high-content and high-throughput microscopic images.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/patología , Recuento de Células/métodos , Recuento de Células/normas , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Células Tumorales Cultivadas
20.
J Med Chem ; 62(7): 3677-3695, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30895781

RESUMEN

Cluster of differentiation 73 (CD73) converts adenosine 5'-monophosphate to immunosuppressive adenosine, and its inhibition was proposed as a new strategy for cancer treatment. We synthesized 5'- O-[(phosphonomethyl)phosphonic acid] derivatives of purine and pyrimidine nucleosides, which represent nucleoside diphosphate analogues, and compared their CD73 inhibitory potencies. In the adenine series, most ribose modifications and 1-deaza and 3-deaza were detrimental, but 7-deaza was tolerated. Uracil substitution with N3-methyl, but not larger groups, or 2-thio, was tolerated. 1,2-Diphosphono-ethyl modifications were not tolerated. N4-(Aryl)alkyloxy-cytosine derivatives, especially with bulky benzyloxy substituents, showed increased potency. Among the most potent inhibitors were the 5'- O-[(phosphonomethyl)phosphonic acid] derivatives of 5-fluorouridine (4l), N4-benzoyl-cytidine (7f), N4-[ O-(4-benzyloxy)]-cytidine (9h), and N4-[ O-(4-naphth-2-ylmethyloxy)]-cytidine (9e) ( Ki values 5-10 nM at human CD73). Selected compounds tested at the two uridine diphosphate-activated P2Y receptor subtypes showed high CD73 selectivity, especially those with large nucleobase substituents. These nucleotide analogues are among the most potent CD73 inhibitors reported and may be considered for development as parenteral drugs.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Nucleótidos de Purina/química , Nucleótidos de Purina/farmacología , Nucleótidos de Pirimidina/química , Nucleótidos de Pirimidina/farmacología , Animales , Proteínas Ligadas a GPI/antagonistas & inhibidores , Humanos , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA