Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 32(1): 69-85, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148615

RESUMEN

BACKGROUND: In children, the acute pyelonephritis that can result from urinary tract infections (UTIs), which commonly ascend from the bladder to the kidney, is a growing concern because it poses a risk of renal scarring and irreversible loss of kidney function. To date, the cellular mechanisms underlying acute pyelonephritis-driven renal scarring remain unknown. METHODS: We used a preclinical model of uropathogenic Escherichia coli-induced acute pyelonephritis to determine the contribution of neutrophils and monocytes to resolution of the condition and the subsequent development of kidney fibrosis. We used cell-specific monoclonal antibodies to eliminate neutrophils, monocytes, or both. Bacterial ascent and the cell dynamics of phagocytic cells were assessed by biophotonic imaging and flow cytometry, respectively. We used quantitative RT-PCR and histopathologic analyses to evaluate inflammation and renal scarring. RESULTS: We found that neutrophils are critical to control bacterial ascent, which is in line with previous studies suggesting a protective role for neutrophils during a UTI, whereas monocyte-derived macrophages orchestrate a strong, but ineffective, inflammatory response against uropathogenic, E. coli-induced, acute pyelonephritis. Experimental neutropenia during acute pyelonephritis resulted in a compensatory increase in the number of monocytes and heightened macrophage-dependent inflammation in the kidney. Exacerbated macrophage-mediated inflammatory responses promoted renal scarring and compromised renal function, as indicated by elevated serum creatinine, BUN, and potassium. CONCLUSIONS: These findings reveal a previously unappreciated outcome for neutrophil-macrophage imbalance in promoting host susceptibility to acute pyelonephritis and the development of permanent renal damage. This suggests targeting dysregulated macrophage responses might be a therapeutic tool to prevent renal scarring during acute pyelonephritis.


Asunto(s)
Cicatriz/fisiopatología , Riñón/fisiopatología , Macrófagos/citología , Neutrófilos/citología , Pielonefritis/metabolismo , Animales , Escherichia coli , Femenino , Fibrosis/microbiología , Fibrosis/fisiopatología , Inflamación , Riñón/microbiología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Fagocitosis , Pielonefritis/microbiología , Pielonefritis/fisiopatología , Infecciones Urinarias/microbiología , Infecciones Urinarias/fisiopatología
2.
PLoS Pathog ; 14(10): e1007355, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30332468

RESUMEN

Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM.


Asunto(s)
Infecciones por Haemophilus/microbiología , Haemophilus influenzae/patogenicidad , Hemo/deficiencia , Deficiencias de Hierro , Otitis Media/microbiología , Virulencia , Animales , Chinchilla , Modelos Animales de Enfermedad , Oído Medio/microbiología , Infecciones por Haemophilus/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/aislamiento & purificación , Humanos , Otitis Media con Derrame/microbiología , Hidrolasas Diéster Fosfóricas/metabolismo
3.
Mol Cell Proteomics ; 15(3): 1117-38, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26711468

RESUMEN

A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.


Asunto(s)
Infecciones por Haemophilus/metabolismo , Haemophilus influenzae/patogenicidad , Metabolómica/métodos , Otitis Media/microbiología , Proteómica/métodos , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Chinchilla , Cromatografía Liquida , Modelos Animales de Enfermedad , Infecciones por Haemophilus/inmunología , Interacciones Huésped-Patógeno , Humanos , Otitis Media/inmunología , Otitis Media/metabolismo , Espectrometría de Masas en Tándem
4.
Am J Physiol Renal Physiol ; 312(1): F43-F53, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27760770

RESUMEN

Acquired renal scarring occurs in a subset of patients following febrile urinary tract infections and is associated with hypertension, proteinuria, and chronic kidney disease. Limited knowledge of histopathology, immune cell recruitment, and gene expression changes during pyelonephritis restricts the development of therapies to limit renal scarring. Here, we address this knowledge gap using immunocompetent mice with vesicoureteral reflux. Transurethral inoculation of uropathogenic Escherichia coli in C3H/HeOuJ mice leads to renal mucosal injury, tubulointerstitial nephritis, and cortical fibrosis. The extent of fibrosis correlates most significantly with inflammation at 7 and 28 days postinfection. The recruitment of neutrophils and inflammatory macrophages to infected kidneys is proportional to renal bacterial burden. Transcriptome analysis reveals molecular signatures associated with renal ischemia-reperfusion injury, immune cell chemotaxis, and leukocyte activation. This murine model recapitulates the cardinal histopathological features observed in humans with acquired renal scarring following pyelonephritis. The integration of histopathology, quantification of cellular immune influx, and unbiased transcriptional profiling begins to define potential mechanisms of tissue injury during pyelonephritis in the context of an intact immune response. The clear relationship between inflammatory cell recruitment and fibrosis supports the hypothesis that acquired renal scarring arises as a consequence of excessive host inflammation and suggests that immunomodulatory therapies should be investigated to reduce renal scarring in patients with pyelonephritis.


Asunto(s)
Cicatriz/metabolismo , Escherichia coli/aislamiento & purificación , Inflamación/microbiología , Riñón/microbiología , Pielonefritis/microbiología , Reflujo Vesicoureteral/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis/inmunología , Fibrosis/microbiología , Inflamación/inmunología , Inflamación/patología , Riñón/patología , Ratones , Ratones Endogámicos C3H , Nefritis Intersticial/inmunología , Nefritis Intersticial/microbiología , Nefritis Intersticial/patología , Pielonefritis/inmunología , Daño por Reperfusión/microbiología , Daño por Reperfusión/patología , Reflujo Vesicoureteral/microbiología
5.
J Bacteriol ; 198(6): 964-72, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26755631

RESUMEN

UNLABELLED: Urinary tract infection (UTI) is one of the most common ailments requiring both short-term and prophylactic antibiotic therapies. Progression of infection from the bladder to the kidney is associated with more severe clinical symptoms (e.g., fever and vomiting) as well as with dangerous disease sequelae (e.g., renal scaring and sepsis). Host-pathogen interactions that promote bacterial ascent to the kidney are not completely understood. Prior studies indicate that the magnitude of proinflammatory cytokine elicitation in vitro by clinical isolates of uropathogenic Escherichia coli (UPEC) inversely correlates with the severity of clinical disease. Therefore, we hypothesize that the magnitude of initial proinflammatory responses during infection defines the course and severity of disease. Clinical UPEC isolates obtained from patients with a nonfebrile UTI elicited high systemic proinflammatory responses early during experimental UTI in a murine model and were attenuated in bladder and kidney persistence. Conversely, UPEC isolates obtained from patients with febrile UTI elicited low systemic proinflammatory responses early during experimental UTI and exhibited prolonged persistence in the bladder and kidney. Soluble factors in the supernatant from saturated cultures as well as the lipopolysaccharide (LPS) serotype correlated with the magnitude of proinflammatory responses in vitro. Our data suggest that the structure of the O-antigen sugar moiety of the LPS may determine the strength of cytokine induction by epithelial cells. Moreover, the course and severity of disease appear to be the consequence of the magnitude of initial cytokines produced by the bladder epithelium during infection. IMPORTANCE: The specific host-pathogen interactions that determine the extent and course of disease are not completely understood. Our studies demonstrate that modest changes in the magnitude of cytokine production observed using in vitro models of infection translate into significant ramifications for bacterial persistence and disease severity. While many studies have demonstrated that modifications of the LPS lipid A moiety modulate the extent of Toll-like receptor 4 (TLR4) activation, our studies implicate the O-antigen sugar moiety as another potential rheostat for the modulation of proinflammatory cytokine production.


Asunto(s)
Citocinas/metabolismo , Antígenos O/inmunología , Serogrupo , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Humanos , Ratones , Antígenos O/clasificación , Sistema Urinario/inmunología , Sistema Urinario/microbiología , Sistema Urinario/patología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/patogenicidad
6.
Mol Microbiol ; 96(6): 1119-35, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25757804

RESUMEN

Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone-like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Factores de Integración del Huésped/metabolismo , Escherichia coli Uropatógena/fisiología , ADN Bacteriano/metabolismo , Matriz Extracelular/metabolismo , Escherichia coli Uropatógena/metabolismo
7.
PLoS Pathog ; 9(10): e1003709, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130500

RESUMEN

In an effort to suppress microbial outgrowth, the host sequesters essential nutrients in a process termed nutritional immunity. However, inflammatory responses to bacterial insult can restore nutritional resources. Given that nutrient availability modulates virulence factor production and biofilm formation by other bacterial species, we hypothesized that fluctuations in heme-iron availability, particularly at privileged sites, would similarly influence Haemophilus biofilm formation and pathogenesis. Thus, we cultured Haemophilus through sequential heme-iron deplete and heme-iron replete media to determine the effect of transient depletion of internal stores of heme-iron on multiple pathogenic phenotypes. We observed that prior heme-iron restriction potentiates biofilm changes for at least 72 hours that include increased peak height and architectural complexity as compared to biofilms initiated from heme-iron replete bacteria, suggesting a mechanism for epigenetic responses that participate in the changes observed. Additionally, in a co-infection model for human otitis media, heme-iron restricted Haemophilus, although accounting for only 10% of the inoculum (90% heme-iron replete), represented up to 99% of the organisms recovered at 4 days. These data indicate that fluctuations in heme-iron availability promote a survival advantage during disease. Filamentation mediated by a SulA-related ortholog was required for optimal biofilm peak height and persistence during experimental otitis media. Moreover, severity of disease in response to heme-iron restricted Haemophilus was reduced as evidenced by lack of mucosal destruction, decreased erythema, hemorrhagic foci and vasodilatation. Transient restriction of heme-iron also promoted productive invasion events leading to the development of intracellular bacterial communities. Taken together, these data suggest that nutritional immunity, may, in fact, foster long-term phenotypic changes that better equip bacteria for survival at infectious sites.


Asunto(s)
Biopelículas , Epigénesis Genética , Infecciones por Haemophilus/metabolismo , Haemophilus/fisiología , Hemo/metabolismo , Hierro/metabolismo , Otitis Media/metabolismo , Animales , Chinchilla , Modelos Animales de Enfermedad , Infecciones por Haemophilus/genética , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/patología , Hemo/genética , Hemo/inmunología , Humanos , Hierro/inmunología , Otitis Media/genética , Otitis Media/inmunología , Otitis Media/microbiología , Otitis Media/patología , Índice de Severidad de la Enfermedad , Factores de Tiempo
8.
Annu Rev Microbiol ; 64: 203-21, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20825346

RESUMEN

Paradigms in the pathogenesis of urinary tract infections have shifted dramatically as a result of recent scientific revelations. Beyond extracellular colonization of the bladder luminal surface, as traditional clinical thinking would hold, uropathogenic bacteria direct a complex, intracellular cascade that shelters bacteria from host defenses and leads to persistent bacterial residence within the epithelium. After epithelial invasion, many organisms are promptly expelled by bladder epithelial cells; a minority establish a niche in the cytoplasm that results in the development of biofilm-like intracellular bacterial communities and serves as the primary location for bacterial expansion. Exfoliation of the superficial epithelial layer acts to reduce the bacterial load but facilitates chronic residence of small nests of bacteria that later reemerge to cause some episodes of recurrent cystitis, a familiar clinical scenario in otherwise healthy women. Advances in both in vitro and animal models of cystitis promise to provide insights into the bacterial and host transcriptional and biochemical pathways that define these pathogenic stages.


Asunto(s)
Citoplasma/microbiología , Células Epiteliales/microbiología , Evasión Inmune , Sistema Urinario/microbiología , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/patogenicidad , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Modelos Biológicos , Recurrencia , Infecciones Urinarias/microbiología
9.
Kidney Int ; 85(5): 1179-91, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24107847

RESUMEN

Recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Previously, we have shown that ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that has a broad-spectrum antimicrobial activity against uropathogenic bacteria. The urothelium of the lower urinary tract and intercalated cells of the kidney produce RNase 7, but regulation of its antimicrobial activity has not been well defined. Here, we characterize the expression of an endogenous inhibitor, ribonuclease inhibitor (RI), in the urinary tract and evaluate its effect on the antimicrobial activity of RNase 7. Using RNA isolated from non-infected human bladder and kidney tissue, quantitative real-time polymerase chain reaction showed that RNH1, the gene encoding RI, is constitutively expressed throughout the urinary tract. With pyelonephritis, RNH1 expression and RI peptide production significantly decrease. Immunostaining localized RI production to the umbrella cells of the bladder and intercalated cells of the renal collecting tubule. In vitro assays showed that RI bound to RNase 7 and suppressed its antimicrobial activity by blocking its ability to bind the cell wall of uropathogenic bacteria. Thus, these results demonstrate a new immunomodulatory role for RI and identified a unique regulatory pathway that may affect how RNase 7 maintains urinary tract sterility.


Asunto(s)
Proteínas Portadoras/metabolismo , Riñón/enzimología , Pielonefritis/enzimología , Ribonucleasas/antagonistas & inhibidores , Vejiga Urinaria/enzimología , Urotelio/enzimología , Adolescente , Adulto , Anciano , Proteínas Portadoras/genética , Proteínas Portadoras/orina , Estudios de Casos y Controles , Pared Celular/enzimología , Niño , Preescolar , Enterococcus faecalis/enzimología , Enterococcus faecalis/patogenicidad , Escherichia coli/enzimología , Escherichia coli/patogenicidad , Femenino , Regulación Enzimológica de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Riñón/microbiología , Elastasa de Leucocito/metabolismo , Masculino , Persona de Mediana Edad , Unión Proteica , Proteolisis , Pielonefritis/genética , Pielonefritis/microbiología , Pielonefritis/orina , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleasas/orina , Factores de Tiempo , Vejiga Urinaria/microbiología , Urotelio/microbiología
10.
J Vet Intern Med ; 37(6): 2219-2229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682015

RESUMEN

BACKGROUND: Urine is routinely evaluated in dogs to assess health. Reference ranges for many urine properties are well established, but the scope of variation in these properties over time within healthy dogs is not well characterized. OBJECTIVES: Longitudinally characterize urine properties in healthy dogs over 3 months. ANIMALS: Fourteen healthy client-owned dogs. METHODS: In this prospective study, dogs were evaluated for health; then, mid-stream free-catch urine was collected from each dog at 12 timepoints over 3 months. Urine pH, urine specific gravity (USG), protein, cultures, and antimicrobial resistance profiles were assessed at each timepoint. RESULTS: Urine pH varied within and between dogs over time (Friedman's test: within P = .03; between P < .005). However, USG, protein, and bacterial diversity of urine were consistent within dogs over time, and only varied between dogs (Kruskal-Wallis: between all P < .005). Antimicrobial resistant isolates were identified in 12 out of 14 dogs with 34 of 48 of the isolates demonstrating resistance to amoxicillin. CONCLUSIONS AND CLINICAL IMPORTANCE: Urine pH should be assessed at multiple timepoints via pH meter before making clinical decisions. Mid-stream free-catch urine with high concentrations of bacteria (>105 CFU/mL) should not be considered the only indicator of urinary tract infection. Bacterial isolates from dogs in this study had widespread resistance to amoxicillin/oxacillin underscoring the need for antimicrobial stewardship.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Perros , Animales , Gravedad Específica , Antibacterianos/farmacología , Estudios Prospectivos , Amoxicilina , Concentración de Iones de Hidrógeno
11.
Am J Vet Res ; 84(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37353214

RESUMEN

OBJECTIVES: To investigate the probiotic Escherichia coli Nissle 1917 (EcN) in canine idiopathic diarrhea and urinary tract infections. ANIMALS/SAMPLES: The utility of EcN was explored in a 3-phase study from March 2017 to June 2020. Eighty-nine dogs with idiopathic diarrhea were included in phase 1, 3 healthy dogs were included in phase 2, and uropathogenic E coli (UPEC) isolates from 38 dogs with urinary tract infections were included in phase 3. PROCEDURES: In phase 1, dogs with diarrhea were prospectively enrolled in a randomized study to receive EcN (108 EcN bacteria/mL; < 10 kg received 5 mL/dose, 10 to 25 kg received 10 mL/dose, or > 25 kg received 15 mL/dose) or placebo for 3 days, followed by a 15-day observation phase. In phase 2, healthy dogs received EcN as described in phase 1, with feces analyzed for E coli populations and microbiome composition at days 0, 3, and 7. In phase 3, EcN efficacy was tested by in vitro plate assay against UPEC isolates. RESULTS: Median duration of abnormal stool consistency, time to response, and duration of diarrhea were shorter for dogs that received EcN (5.0, 3.0, and 2.0 days, respectively) versus the placebo (7.0, 5.0, and 4.0 days, respectively) (P = .21, P = .05, and P = .039, respectively). EcN induced shifts in E coli diversity in healthy dogs while having minimal impact on overall microbiome structure. Furthermore, 68% of the canine UPEC isolates were susceptible to EcN in vitro. CLINICAL RELEVANCE: EcN improved the treatment of idiopathic diarrhea, colonized the gastrointestinal tract during the trial, and displayed in vitro competition with UPEC.


Asunto(s)
Escherichia coli , Probióticos , Animales , Perros , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Heces , Tracto Gastrointestinal , Probióticos/farmacología , Probióticos/uso terapéutico
12.
J Urol ; 188(1): 236-41, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22595065

RESUMEN

PURPOSE: We hypothesized that virulence levels of Escherichia coli isolates causing pediatric urinary tract infections differ according to severity of infection and also among various uropathies known to contribute to pediatric urinary tract infections. We evaluated these relationships using in vitro cytokine interleukin-6 elicitation. MATERIALS AND METHODS: E. coli isolates were cultured from children presenting with urinary tract infections. In vitro cytokine (interleukin-6) elicitation was quantified for each isolate and the bacteria were grouped according to type of infection and underlying uropathy (neurogenic bladder, nonneurogenic bowel and bladder dysfunction, primary vesicoureteral reflux, no underlying etiology). RESULTS: A total of 40 E. coli isolates were collected from children with a mean age of 61.5 months (range 1 to 204). Mean level of in vitro cytokine elicitation from febrile urinary tract infection producing E. coli was significantly lower than for nonfebrile strains (p = 0.01). The interleukin-6 response to E. coli in the neurogenic bladder group was also significantly higher than in the vesicoureteral reflux (p = 0.01) and no underlying etiology groups (p = 0.02). CONCLUSIONS: In vitro interleukin-6 elicitation, an established marker to determine bacterial virulence, correlates inversely with clinical urinary tract infection severity. Less virulent, high cytokine producing E. coli were more likely to cause cystitis and were more commonly found in patients with neurogenic bladder and nonneurogenic bowel and bladder dysfunction, whereas higher virulence isolates were more likely to produce febrile urinary tract infections and to affect children with primary vesicoureteral reflux and no underlying etiology. These findings suggest that bacteria of different virulence levels may be responsible for differences in severity of pediatric urinary tract infections and may vary among different underlying uropathies.


Asunto(s)
Infecciones por Escherichia coli/complicaciones , Escherichia coli/patogenicidad , Interleucina-6/sangre , Medición de Riesgo , Infecciones Urinarias/complicaciones , Reflujo Vesicoureteral/etiología , Niño , Preescolar , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Prevalencia , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiología , Infecciones Urinarias/epidemiología , Infecciones Urinarias/microbiología , Reflujo Vesicoureteral/sangre , Reflujo Vesicoureteral/epidemiología , Virulencia
13.
Am J Vet Res ; 83(7)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35930788

RESUMEN

OBJECTIVE: To characterize uropathogenic Escherichia coli (UPEC) in cases of clinical feline urinary tract infection (UTI) and subclinical bacteriuria and investigate the in vitro effects of E coli strain Nissle 1917 on isolate growth. ANIMALS: 40 cats with positive E coli culture results for urine collected during routine evaluation. PROCEDURES: Characterization of UPEC isolates was performed by PCR-based phylotype analysis and serotyping. Nissle 1917 effects on growth inhibition and competitive overgrowth against UPEC isolates were evaluated in vitro using a plate-based competition assay. RESULTS: Feline phylogroups were similar to previous human and feline UPEC studies, with most of the isolates belonging to phylogroup A (42.5%), B2 (37.5%), and D (15.0%). Fifty-two percent of isolates were found to be resistant to antimicrobials, with 19% of these being multidrug resistant (MDR). Nissle 1917 adversely affected the growth of 82.5% of all isolates and 100% of MDR isolates in vitro. The median zone of inhibition was 3.33 mm (range, 1.67 to 10.67 mm). Thirteen isolates were affected via competitive overgrowth and 20 via growth inhibition. CLINICAL RELEVANCE: UPEC isolates from cats were similar in phylogroup analysis to human and dog isolates. The in vitro effects of Nissle 1917 on UPEC warrant additional studies to determine if similar results can be duplicated in vivo.


Asunto(s)
Enfermedades de los Gatos , Infecciones por Escherichia coli , Probióticos , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Gatos , Infecciones por Escherichia coli/veterinaria , Humanos , Filogenia , Infecciones Urinarias/veterinaria
14.
BMC Bioinformatics ; 12: 145, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21569257

RESUMEN

BACKGROUND: Flow Cytometry is a process by which cells, and other microscopic particles, can be identified, counted, and sorted mechanically through the use of hydrodynamic pressure and laser-activated fluorescence labeling. As immunostained cells pass individually through the flow chamber of the instrument, laser pulses cause fluorescence emissions that are recorded digitally for later analysis as multidimensional vectors. Current, widely adopted analysis software limits users to manual separation of events based on viewing two or three simultaneous dimensions. While this may be adequate for experiments using four or fewer colors, advances have lead to laser flow cytometers capable of recording 20 different colors simultaneously. In addition, mass-spectrometry based machines capable of recording at least 100 separate channels are being developed. Analysis of such high-dimensional data by visual exploration alone can be error-prone and susceptible to unnecessary bias. Fortunately, the field of Data Mining provides many tools for automated group classification of multi-dimensional data, and many algorithms have been adapted or created for flow cytometry. However, the majority of this research has not been made available to users through analysis software packages and, as such, are not in wide use. RESULTS: We have developed a new software application for analysis of multi-color flow cytometry data. The main goals of this effort were to provide a user-friendly tool for automated gating (classification) of multi-color data as well as a platform for development and dissemination of new analysis tools. With this software, users can easily load single or multiple data sets, perform automated event classification, and graphically compare results within and between experiments. We also make available a simple plugin system that enables researchers to implement and share their data analysis and classification/population discovery algorithms. CONCLUSIONS: The FIND (Flow Investigation using N-Dimensions) platform presented here provides a powerful, user-friendly environment for analysis of Flow Cytometry data as well as providing a common platform for implementation and distribution of new automated analysis techniques to users around the world.


Asunto(s)
Citometría de Flujo/métodos , Programas Informáticos , Algoritmos , Hidrodinámica , Rayos Láser , Lenguajes de Programación
15.
Kidney Int ; 80(2): 174-80, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21525852

RESUMEN

Although the urinary tract is constantly challenged by microbial invasion, it remains free from colonization. Although little is known about how the urinary tract maintains sterility, the presence of antimicrobial peptides (AMPs) in the urine suggests that they may play a role in its protection from infection. Ribonuclease 7 (RNase 7) is a potent AMP that was first identified in the skin. Here, we characterize the expression and relevance of RNase 7 in the human kidney and urinary tract. Using RNA isolated from healthy human tissue, we performed quantitative real-time PCR and found basal RNASE7 expression in kidney and bladder tissue. Immunohistochemical and immunofluorescent analysis localized RNase 7 to the urothelium of the bladder, ureter, and the intercalated cells of the collecting tubules. In control urine samples from healthy individuals, the concentration of RNase 7 was found to be in the low micromolar range; very abundant for an AMP. Antibacterial neutralization assays showed that urinary RNase 7 has potent antimicrobial properties against Gram-negative and Gram-positive uropathogenic bacteria. Thus, RNase 7 is expressed in the human kidney and urinary tract and it may have an important antimicrobial role in maintaining tract sterility.


Asunto(s)
Ribonucleasas/análisis , Ribonucleasas/inmunología , Sistema Urinario/enzimología , Péptidos Catiónicos Antimicrobianos/análisis , Bacterias/inmunología , Humanos , Riñón/enzimología , Riñón/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Ribonucleasas/genética , Distribución Tisular , Vejiga Urinaria , Sistema Urinario/inmunología , Urotelio
16.
J Urol ; 186(4 Suppl): 1678-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21855931

RESUMEN

PURPOSE: The usefulness of prophylactic antibiotics to prevent recurrent urinary tract infections in children was recently questioned. Some groups have attempted to use probiotics, most commonly lactobacillus, to prevent recurrent infections by altering the intestinal bacterial reservoir with variable results. Mutaflor® is a possible alternative probiotic in which the active agent is Nissle 1917. Nissle 1917 is a commensal Escherichia coli strain that eradicates pathogenic bacteria from the gastrointestinal tract. Due to its ability to alter the intestinal biome we hypothesized that Mutaflor may have the potential to prevent recurrent urinary tract infections. Thus, we used an in vitro assay to analyze the effectiveness of Nissle 1917 for eradicating pediatric uropathogens. MATERIALS AND METHODS: We established a collection of 43 bacterial pediatric uropathogens. With each isolate a microcin-type assay was performed to determine the effectiveness of Nissle 1917 on bacterial growth inhibition and competitive overgrowth. RESULTS: Nissle 1917 adversely affected the growth of 34 of the 43 isolates (79%) isolates. It inhibited the growth of 21 isolates and overgrew 13. The percent of species adversely affected by Nissle 1917 was 40% for Pseudomonas, 50% for E. coli, Enterococcus and Staphylococcus, 100% for Klebsiella and Enterobacter, and 0% for Citrobacter and Serratia. CONCLUSIONS: Nissle 1917, the active agent in Mutaflor, inhibited or out competed most bacterial isolates. These mechanisms could be used in vivo to eradicate uropathogens from the gastrointestinal tract. Further study is needed to determine whether Mutaflor can prevent recurrent urinary tract infections in children.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Probióticos/farmacología , Infecciones Urinarias/prevención & control , Niño , Preescolar , Recuento de Colonia Microbiana , Escherichia coli/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Recién Nacido , Prevención Secundaria , Sistema Urinario/microbiología , Infecciones Urinarias/microbiología
17.
Curr Opin Urol ; 21(4): 328-33, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21519273

RESUMEN

PURPOSE OF REVIEW: To highlight observations that have suggested the need for changing the conventional approach to the evaluation and management of urinary tract infections (UTIs) and vesicoureteral reflux in children and examine new alternative approaches to prevention of UTI and renal scarring based on research into host-pathogen interaction. RECENT FINDINGS: Recent studies have questioned the traditional approach of using prophylactic antibiotics to prevent recurrence of UTI and development of renal scarring in children with vesicoureteral reflux. Ongoing research on host-pathogen interactions reveals a promising capability to analyze virulence factors in bacteria causing UTIs in children, identify highly virulent bacteria capable of causing pyelonephritis and renal injury, and to selectively target the gastrointestinal reservoirs of these bacteria for elimination using probiotics. SUMMARY: Promising experimental studies correlating bacterial virulence with pattern of UTI and identification and characterization of a newly available probiotic capable of eradicating uropathogenic bacteria make targeted probiotic prevention of renal injury-inducing UTIs a potential therapeutic reality.


Asunto(s)
Antibacterianos/uso terapéutico , Enfermedades Renales/prevención & control , Probióticos , Infecciones Urinarias/prevención & control , Reflujo Vesicoureteral/terapia , Niño , Preescolar , Femenino , Interacciones Huésped-Patógeno , Humanos , Lactante , Enfermedades Renales/microbiología , Masculino , Recurrencia , Resultado del Tratamiento , Infecciones Urinarias/microbiología , Reflujo Vesicoureteral/complicaciones , Reflujo Vesicoureteral/microbiología
18.
Front Pediatr ; 8: 542413, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364220

RESUMEN

Introduction: The pediatric perineal microbiomes inhabit a dynamic environment with changes related to diet, toileting habits, and hormonal development. We hypothesized that next-generation sequencing would reveal different perineal bacterial signatures associated with developmental milestones in premenstrual females. Furthermore, we predicted that these microbial changes would be disrupted in premenstrual females with a history of urinary tract infection (UTI). Study Design: Healthy females were recruited at well-child visits. Subjects were divided into 4 developmental groups: (1) 0-3 month old newborns; (2) 4-10 month old infants transitioning to solid foods; (3) 2-6 year old toddlers peri-toilet training; and (4) 7-12 year old premenstrual girls. A separate group of females with a history of culture proven UTI and off antibiotics >1 month was also recruited. DNA was isolated from swabs of the perineum and subjected to 16S rRNA sequencing. The diversity and species changes between developmental cohorts and age matched children with history of UTI was determined. Results: A total of 75 subjects were recruited: 15 in each group. There was a clear evolution of the perineal microbiomes with development. There was a significant microbial disruption in girls with a history of UTI, irrespective of developmental milestone age group. The periurethral/perivaginal site displayed greater changes in microbiome structure than other sites in girls with a history of UTI. Discussion: This pilot study evaluates the normal microbiome of the premenstrual girl at specific developmental milestones. Although the number of children per cohort was limited to 15, we observed statistical significance corresponding with developmental milestones. This study provides the first, culture independent delineation of the development of the perineal microbiome in girls. Furthermore, the sites closest to the site of infection appear to be more sensitive to antibiotic remodeling than those more distant. The factors that remodel the perineal microbiomes and predispose females, particularly girls, to UTIs (e.g., increase in uropathogen presence, absence of protective organisms) are unclear. Identification of specific signatures that increase susceptibility to UTI and their sequelae will improve patient care and promote personalized medicine.

19.
Cell Rep ; 30(9): 2978-2988.e3, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130901

RESUMEN

Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease severity. We use a pre-clinical model of otitis media (OM) to determine the potential role for microevolution of nontypeable Haemophilus influenzae (NTHI) during sequential episodes of disease. Whole genome sequencing reveals microevolution of hemoglobin binding and lipooligosaccharide (LOS) biosynthesis genes, suggesting that adaptation of these systems is critical for infection. These OM-adapted strains promote increased biofilm formation, inflammation, stromal fibrosis, and an increased propensity to form intracellular bacterial communities (IBCs). Remarkably, IBCs remain for at least one month following clinical resolution of infection, suggesting an intracellular reservoir as a nidus for recurrent OM. Additional approaches for therapeutic design tailored to combat this burdensome disease will arise from these studies.


Asunto(s)
Progresión de la Enfermedad , Infecciones/patología , Enfermedad Aguda , Adaptación Fisiológica , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Vías Biosintéticas/genética , Chinchilla , Fibrosis , Glicosiltransferasas/genética , Haemophilus influenzae/fisiología , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Inflamación/patología , Lipopolisacáridos/biosíntesis , Otitis Media/genética , Otitis Media/microbiología , Polimorfismo de Nucleótido Simple/genética , Células del Estroma/patología
20.
NPJ Biofilms Microbiomes ; 5(1): 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31700653

RESUMEN

Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.


Asunto(s)
Adaptación Fisiológica , Biopelículas/crecimiento & desarrollo , Haemophilus influenzae/crecimiento & desarrollo , Haemophilus influenzae/metabolismo , Hemo/metabolismo , Viabilidad Microbiana , Perfilación de la Expresión Génica , Hierro/metabolismo , Metabolismo , Metaboloma , Proteoma/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA