Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(8): 902-913, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32690949

RESUMEN

Initiation of T cell antigen receptor (TCR) signaling involves phosphorylation of CD3 cytoplasmic tails by the tyrosine kinase Lck. How Lck is recruited to the TCR to initiate signaling is not well known. We report a previously unknown binding motif in the CD3ε cytoplasmic tail that interacts in a noncanonical mode with the Lck SH3 domain: the receptor kinase (RK) motif. The RK motif is accessible only upon TCR ligation, demonstrating how ligand binding leads to Lck recruitment. Binding of the Lck SH3 domain to the exposed RK motif resulted in local augmentation of Lck activity, CD3 phosphorylation, T cell activation and thymocyte development. Introducing the RK motif into a well-characterized 41BB-based chimeric antigen receptor enhanced its antitumor function in vitro and in vivo. Our findings underscore how a better understanding of the functioning of the TCR might promote rational improvement of chimeric antigen receptor design for the treatment of cancer.


Asunto(s)
Complejo CD3/metabolismo , Activación de Linfocitos/inmunología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Secuencias de Aminoácidos/inmunología , Animales , Complejo CD3/inmunología , Humanos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/inmunología , Ratones , Receptores de Antígenos de Linfocitos T/inmunología
3.
J Cell Sci ; 135(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205606

RESUMEN

Protein phosphorylation on serine and threonine residues is a widely distributed post-translational modification on proteins that acts to regulate their function. Phosphoprotein phosphatases (PPPs) contribute significantly to a plethora of cellular functions through the accurate dephosphorylation of phosphorylated residues. Most PPPs accomplish their purpose through the formation of complex holoenzymes composed of a catalytic subunit with various regulatory subunits. PPP holoenzymes then bind and dephosphorylate substrates in a highly specific manner. Despite the high prevalence of PPPs and their important role for cellular function, their mechanisms of action in the cell are still not well understood. Nevertheless, substantial experimental advancements in (phospho-)proteomics, structural and computational biology have contributed significantly to a better understanding of PPP biology in recent years. This Review focuses on recent approaches and provides an overview of substantial new insights into the complex mechanism of PPP holoenzyme regulation and substrate selectivity.


Asunto(s)
Fosfoproteínas Fosfatasas , Fosfoproteínas , Holoenzimas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteína Fosfatasa 2/metabolismo , Serina/metabolismo , Treonina/metabolismo
4.
J Org Chem ; 89(6): 3844-3856, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38413005

RESUMEN

Herein, we present a straightforward synthetic route for the design and synthesis of diverse heterobifunctional cyanine 5 dyes. We optimized the workup by harnessing the pH- and functional group-dependent solubility of the asymmetric cyanine 5 dyes. Therefore, purification through chromatography is deferred until the last synthesis step. Demonstrating successful large-scale synthesis, our modular approach prevents functional group degradation by introducing them in the last synthesis step. These modifiable heterobifunctional dyes offer significant utility in advancing biological studies.


Asunto(s)
Colorantes , Colorantes Fluorescentes , Carbocianinas , Solubilidad , Colorantes Fluorescentes/química
5.
EMBO Rep ; 22(8): e52507, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34309183

RESUMEN

Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.


Asunto(s)
Pliegue de Proteína , Proteostasis , Supervivencia Celular , Proteoma/metabolismo , Estrés Mecánico
6.
J Pept Sci ; 29(6): e3469, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36525306

RESUMEN

Protein phosphatase-1 (PP1) is a ubiquitous enzyme involved in multiple processes inside cells. PP1-disrupting peptides (PDPs) are chemical tools that selectively bind to PP1 and release its activity. To restrict the activity of PDPs to a cellular compartment, we developed PDP-Mem, a cell membrane-targeting PDP. The membrane localization was achieved through the introduction of a palmitoylated lysine. PDP-Mem was shown to activate PP1α in vitro and to localize to the membrane of HeLa Kyoto and U2OS cells. However, in cells, the combination of the polybasic sequence for cell penetration and the membrane targeting palmitoylated lysine activates the MAPK signaling pathway and induces cytoplasmic calcium release independently of PP1 activation. Therefore, when targeting peptides to cellular membranes, undesired effects induced by the targeting sequence and lipid modification need to be considered.


Asunto(s)
Lisina , Péptidos , Humanos , Proteína Fosfatasa 1/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Células HeLa , Transducción de Señal , Fosforilación
7.
Bioorg Med Chem ; 65: 116785, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35525109

RESUMEN

PP1 is a major phosphoserine/threonine-specific phosphatase that is involved in diseases such as heart insufficiency and diabetes. PP1-disrupting peptides (PDPs) are selective modulators of PP1 activity that release its catalytic subunit, which then dephosphorylates nearby substrates. Recently, PDPs enabled the creation of phosphatase-recruiting chimeras, which are bifunctional molecules that guide PP1 to a kinase to dephosphorylate and inactivate it. However, PDPs are 23mer peptides, which is not optimal for their use in therapy due to potential stability and immunogenicity issues. Therefore, we present here the sequence optimization of the 23mer PDP to a 5mer peptide, involving several attempts considering structure-based virtual screening, high throughput screening and peptide sequence optimization. We provide here a strong pharmacophore as lead structure to enable PP1 targeting in therapy or its use in phosphatase-recruiting chimeras in the future.


Asunto(s)
Péptidos , Treonina , Secuencia de Aminoácidos , Dominio Catalítico , Péptidos/química , Fosforilación , Proteína Fosfatasa 1/metabolismo , Treonina/metabolismo
8.
Chembiochem ; 22(5): 834-838, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33085143

RESUMEN

Phosphoprotein phosphatase-1 (PP1) is a key player in the regulation of phospho-serine (pSer) and phospho-threonine (pThr) dephosphorylation and is involved in a large fraction of cellular signaling pathways. Aberrant activity of PP1 has been linked to many diseases, including cancer and heart failure. Besides a well-established activity control by regulatory proteins, an inhibitory function for phosphorylation (p) of a Thr residue in the C-terminal intrinsically disordered tail of PP1 has been demonstrated. The associated phenotype of cell-cycle arrest was repeatedly proposed to be due to autoinhibition of PP1 through either conformational changes or substrate competition. Here, we use PP1 variants created by mutations and protein semisynthesis to differentiate between these hypotheses. Our data support the hypothesis that pThr exerts its inhibitory function by mediating protein complex formation rather than by a direct mechanism of structural changes or substrate competition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Serina/química , Treonina/química , Humanos , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Fosfatasa 1/genética
9.
Biochem Soc Trans ; 49(3): 1065-1074, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34100859

RESUMEN

Phosphorylation of the hydroxyl group of the amino acids serine and threonine is among the most prevalent post-translational modifications in mammalian cells. Phospho-serine (pSer) and -threonine (pThr) represent a central cornerstone in the cell's toolbox for adaptation to signal input. The true power for the fast modulation of the regulatory pSer/pThr sites arises from the timely attachment, binding and removal of the phosphate. The phosphorylation of serine and threonine by kinases and the binding of pSer/pThr by phosphorylation-dependent scaffold proteins is largely determined by the sequence motif surrounding the phosphorylation site (p-site). The removal of the phosphate is regulated by pSer/pThr-specific phosphatases with the two most prominent ones being PP1 and PP2A. For this family, recent advances brought forward a more complex mechanism for p-site selection. The interaction of regulatory proteins with the substrate protein constitutes a first layer for substrate recognition, but also interactions of the catalytic subunit with the amino acids in close proximity to pSer/pThr contribute to p-site selection. Here, we review the current pieces of evidence for this multi-layered, complex mechanism and hypothesize that, depending on the degree of higher structure surrounding the substrate site, recognition is more strongly influenced by regulatory subunits away from the active site for structured substrate regions, whereas the motif context is of strong relevance with p-sites in disordered regions. The latter makes these amino acid sequences crossroads for signaling and motif strength between kinases, pSer/pThr-binding proteins and phosphatases.


Asunto(s)
Evolución Molecular , Proteínas Intrínsecamente Desordenadas/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 2/genética , Transducción de Señal/genética , Animales , Sitios de Unión/genética , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Serina/genética , Serina/metabolismo , Especificidad por Sustrato , Treonina/genética , Treonina/metabolismo
10.
Nat Chem Biol ; 15(7): 710-720, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31222192

RESUMEN

Autophagy mediates the degradation of damaged proteins, organelles and pathogens, and plays a key role in health and disease. Thus, the identification of new mechanisms involved in the regulation of autophagy is of major interest. In particular, little is known about the role of lipids and lipid-binding proteins in the early steps of autophagosome biogenesis. Using target-agnostic, high-content, image-based identification of indicative phenotypic changes induced by small molecules, we have identified autogramins as a new class of autophagy inhibitor. Autogramins selectively target the recently discovered cholesterol transfer protein GRAM domain-containing protein 1A (GRAMD1A, which had not previously been implicated in autophagy), and directly compete with cholesterol binding to the GRAMD1A StART domain. GRAMD1A accumulates at sites of autophagosome initiation, affects cholesterol distribution in response to starvation and is required for autophagosome biogenesis. These findings identify a new biological function of GRAMD1A and a new role for cholesterol in autophagy.


Asunto(s)
Autofagosomas/metabolismo , Proteínas de la Membrana/metabolismo , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Tumorales Cultivadas
11.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066527

RESUMEN

Activation of T cells by agonistic peptide-MHC can be inhibited by antagonistic ones. However, the exact mechanism remains elusive. We used Jurkat cells expressing two different TCRs and tested whether stimulation of the endogenous TCR by agonistic anti-Vß8 antibodies can be modulated by ligand-binding to the second, optogenetic TCR. The latter TCR uses phytochrome B tetramers (PhyBt) as ligand, the binding half-life of which can be altered by light. We show that this half-life determined whether the PhyBt acted as a second agonist (long half-life), an antagonist (short half-life) or did not have any influence (very short half-life) on calcium influx. A mathematical model of this cross-antagonism shows that a mechanism based on an inhibitory signal generated by early recruitment of a phosphatase and an activating signal by later recruitment of a kinase explains the data.


Asunto(s)
Optogenética , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Anticuerpos/metabolismo , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Semivida , Humanos , Células Jurkat , Ligandos , Modelos Biológicos , Receptores de Antígenos de Linfocitos T/metabolismo
12.
J Biol Chem ; 294(45): 16604-16619, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31515273

RESUMEN

The mammalian CLOCK:BMAL1 transcription factor complex and its coactivators CREB-binding protein (CBP)/p300 and mixed-lineage leukemia 1 (MLL1) critically regulate circadian transcription and chromatin modification. Circadian oscillations are regulated by interactions of BMAL1's C-terminal transactivation domain (TAD) with the KIX domain of CBP/p300 (activating) and with the clock protein CRY1 (repressing) as well as by the BMAL1 G-region preceding the TAD. Circadian acetylation of Lys537 within the G-region enhances repressive BMAL1-TAD-CRY1 interactions. Here, we characterized the interaction of the CBP-KIX domain with BMAL1 proteins, including the BMAL1-TAD, parts of the G-region, and Lys537 Tethering the small compound 1-10 in the MLL-binding pocket of the CBP-KIX domain weakened BMAL1 binding, and MLL1-bound KIX did not form a ternary complex with BMAL1, indicating that the MLL-binding pocket is important for KIX-BMAL1 interactions. Small-angle X-ray scattering (SAXS) models of BMAL1 and BMAL1:KIX complexes revealed that the N-terminal BMAL1 G-region including Lys537 forms elongated extensions emerging from the bulkier BMAL1-TAD:KIX core complex. Fitting high-resolution KIX domain structures into the SAXS-derived envelopes suggested that the G-region emerges near the MLL-binding pocket, further supporting a role of this pocket in BMAL1 binding. Additionally, mutations in the second CREB-pKID/c-Myb-binding pocket of the KIX domain moderately impacted BMAL1 binding. The BMAL1(K537Q) mutation mimicking Lys537 acetylation, however, did not affect the KIX-binding affinity, in contrast to its enhancing effect on CRY1 binding. Our results significantly advance the mechanistic understanding of the protein interaction networks controlling CLOCK:BMAL1- and CBP-dependent gene regulation in the mammalian circadian clock.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteína de Unión a CREB/metabolismo , Relojes Circadianos , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína de Unión a CREB/química , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myb/química , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Difracción de Rayos X
13.
J Org Chem ; 85(3): 1712-1717, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31841001

RESUMEN

We describe here the development of a photoreleasable version of a protein phosphatase-1 (PP1)-disrupting peptide (PDP-Nal) that triggers protein phosphatase-1 activity. PDP-Nal is a 23 mer that binds to PP1 through several interactions. It was photocaged on a tyrosine residue, which required the exchange of phenylalanine in PDP-Nal to tyrosine in order to disrupt the most important binding interface. This PDP-caged can be light-controlled in live cells.


Asunto(s)
Péptidos , Proteína Fosfatasa 1
14.
Chembiochem ; 20(1): 66-71, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30338897

RESUMEN

Protein phosphatase-1 (PP1)-disrupting peptides (PDPs) are selective chemical modulators of PP1 that liberate the active PP1 catalytic subunit from regulatory proteins; thus allowing the dephosphorylation of nearby substrates. We have optimized the original cell-active PDP3 for enhanced stability, and obtained insights into the chemical requirements for stabilizing this 23-mer peptide for cellular applications. The optimized PDP-Nal was used to dissect the involvement of PP1 in the MAPK signaling cascade. Specifically, we have demonstrated that, in human osteosarcoma (U2OS) cells, phosphoMEK1/2 is a direct substrate of PP1, whereas dephosphorylation of phosphoERK1/2 is indirect and likely mediated through enhanced tyrosine phosphatase activity after PDP-mediated PP1 activation. Thus, as liberators of PP1 activity, PDPs represent a valuable tool for identifying the substrates of PP1 and understanding its role in diverse signaling cascades.


Asunto(s)
Péptidos/metabolismo , Proteína Fosfatasa 1/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Histonas/química , Histonas/metabolismo , Humanos , MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa Quinasa 2/química , MAP Quinasa Quinasa Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación
15.
Basic Res Cardiol ; 114(2): 13, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30788598

RESUMEN

Increased late sodium current (late INa) is an important arrhythmogenic trigger in cardiac disease. It prolongs cardiac action potential and leads to an increased SR Ca2+ leak. This study investigates the contribution of Ca2+/Calmodulin-dependent kinase II (CaMKII), protein kinase A (PKA) and conversely acting protein phosphatases 1 and 2A (PP1, PP2A) to this subcellular crosstalk. Augmentation of late INa (ATX-II) in murine cardiomyocytes led to an increase of diastolic Ca2+ spark frequency and amplitudes of Ca2+ transients but did not affect SR Ca2+ load. Interestingly, inhibition of both, CaMKII and PKA, attenuated the late INa-dependent induction of the SR Ca2+ leak. PKA inhibition additionally reduced the amplitudes of systolic Ca2+ transients. FRET-measurements revealed increased levels of cAMP upon late INa augmentation, which could be prevented by simultaneous inhibition of Na+/Ca2+-exchanger (NCX) suggesting that PKA is activated by Ca2+-dependent cAMP-production. Whereas inhibition of PP2A showed no effect on late INa-dependent alterations of Ca2+ cycling, additional inhibition of PP1 further increased the SR Ca2+ leak. In line with this, selective activation of PP1 yielded a strong reduction of the late INa-induced SR Ca2+ leak and did not affect systolic Ca2+ release. This study indicates that phosphatase/kinase-balance is perturbed upon increased Na+ influx leading to disruption of ventricular Ca2+ cycling via CaMKII- and PKA-dependent pathways. Importantly, an activation of PP1 at RyR2 may represent a promising new toehold to counteract pathologically increased kinase activity.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Ratones , Sodio/metabolismo
16.
J Cell Sci ; 129(21): 4130-4142, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27656108

RESUMEN

Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.


Asunto(s)
Forma de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Mitosis , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Células CACO-2 , Polaridad Celular , Citocinesis , Perros , Humanos , Células MCF-7 , Células de Riñón Canino Madin Darby , Modelos Biológicos
17.
Bioorg Med Chem ; 26(6): 1118-1126, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893598

RESUMEN

Microcystins are highly toxic cyanotoxins responsible for plant, animal and human poisoning. Exposure to microcystins, mainly through drinkable water and contaminated food, is a current world health concern. Although it is quite challenging, the synthesis of these potent cyanotoxins, analogs and derivatives helps to evaluate their toxicological properties and to elucidate their binding mechanisms to their main targets Protein Phosphatase-1 (PP1) and -2A (PP2A). This review focuses on synthetic approaches to prepare microcystins and analogs and compiles structure-activity relationship (SAR) studies that describe the unique features of microcystins that make them so potent.


Asunto(s)
Microcistinas/química , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Sitios de Unión , Humanos , Microcistinas/síntesis química , Microcistinas/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Proteína Fosfatasa 1/química , Proteína Fosfatasa 2/química , Relación Estructura-Actividad
18.
J Pept Sci ; 23(10): 749-756, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28876538

RESUMEN

Protein phosphatase-1 and phosphatase-2A are two ubiquitously expressed enzymes known to catalyze the majority of dephosphorylation reactions on serine and threonine inside cells. They play roles in most cellular processes and are tightly regulated by regulatory subunits in holoenzymes. Their misregulation and malfunction contribute to disease development and progression, such as in cancer, diabetes, viral infections, and neurological as well as heart diseases. Therefore, targeting these phosphatases for therapeutic use would be highly desirable; however, their complex regulation and high conservation of the active site have been major hurdles for selectively targeting them in the past. In the last decade, new approaches have been developed to overcome these hurdles and have strongly revived the field. I will focus here on peptide-based approaches, which contributed to showing that these phosphatases can be targeted selectively and aided in rethinking the design of selective phosphatase modulators. Finally, I will give a perspective on www.depod.org, the human dephosphorylation database, and how it can aid phosphatase modulator design. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.


Asunto(s)
Péptidos/metabolismo , Proteína Fosfatasa 1/metabolismo , Animales , Dominio Catalítico , Humanos , Péptidos/genética , Fosforilación , Proteína Fosfatasa 1/genética
19.
Nucleic Acids Res ; 43(Database issue): D531-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25332398

RESUMEN

Phosphatases are crucial enzymes in health and disease, but the knowledge of their biological roles is still limited. Identifying substrates continues to be a great challenge. To support the research on phosphatase-kinase-substrate networks we present here an update on the human DEPhOsphorylation Database: DEPOD (http://www.depod.org or http://www.koehn.embl.de/depod). DEPOD is a manually curated open access database providing human phosphatases, their protein and non-protein substrates, dephosphorylation sites, pathway involvements and external links to kinases and small molecule modulators. All internal data are fully searchable including a BLAST application. Since the first release, more human phosphatases and substrates, their associated signaling pathways (also from new sources), and interacting proteins for all phosphatases and protein substrates have been added into DEPOD. The user interface has been further optimized; for example, the interactive human phosphatase-substrate network contains now a 'highlight node' function for phosphatases, which includes the visualization of neighbors in the network.


Asunto(s)
Bases de Datos de Proteínas , Monoéster Fosfórico Hidrolasas/metabolismo , Humanos , Internet , Fosfoproteínas Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/clasificación , Procesamiento Proteico-Postraduccional
20.
Biochem Soc Trans ; 44(5): 1305-1312, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27911713

RESUMEN

The phosphatase of regenerating liver (PRL)-3 is overexpressed in many human cancer types and tumor metastases when compared with healthy tissues. Different pathways and mechanisms have been suggested to modulate PRL-3 expression levels and activity, giving some valuable insights but still leaving an incomplete picture. Investigating these mechanisms could provide new targets for therapeutic drug development. Here, we present an updated overview and summarize recent findings concerning the different PRL-3 expression regulatory mechanisms and posttranslational modifications suggested to modulate the activity, localization, or stability of this phosphatase.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Tirosina Fosfatasas/genética , Estabilidad de Enzimas , Humanos , Modelos Genéticos , Metástasis de la Neoplasia , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA