Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genes Dev ; 32(9-10): 645-657, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748249

RESUMEN

Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.


Asunto(s)
Colesterol/biosíntesis , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Colesterol/genética , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-maf/genética , Ratas , Ratas Wistar
2.
Brain ; 147(10): 3487-3500, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38984717

RESUMEN

PIEZO2 is a trimeric mechanically-gated ion channel expressed by most sensory neurons in the dorsal root ganglia. Mechanosensitive PIEZO2 channels are also genetically required for normal touch sensation in both mice and humans. We previously showed that PIEZO2 channels are also strongly modulated by membrane voltage. Specifically, it is only at very positive voltages that all channels are available for opening by mechanical force. Conversely, most PIEZO2 channels are blocked at normal negative resting membrane potentials. The physiological function of this unusual biophysical property of PIEZO2 channels, however, remained unknown. We characterized the biophysical properties of three PIEZO2 ion channel mutations at an evolutionarily conserved arginine (R2756). Using genome engineering in mice we generated Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice to characterize the physiological consequences of altering PIEZO2 voltage sensitivity in vivo. We measured endogenous mechanosensitive currents in sensory neurons isolated from the dorsal root ganglia and characterized mechanoreceptor and nociceptor function using electrophysiology. Mice were also assessed behaviourally and morphologically. Mutations at the conserved Arginine (R2756) dramatically changed the biophysical properties of the channel relieving voltage block and lowering mechanical thresholds for channel activation. Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice that were homozygous for gain-of-function mutations were viable and were tested for sensory changes. Surprisingly, mechanosensitive currents in nociceptors, neurons that detect noxious mechanical stimuli, were substantially sensitized in Piezo2 knock-in mice, but mechanosensitive currents in most mechanoreceptors that underlie touch sensation were only mildly affected by the same mutations. Single-unit electrophysiological recordings from sensory neurons innervating the glabrous skin revealed that rapidly-adapting mechanoreceptors that innervate Meissner's corpuscles exhibited slightly decreased mechanical thresholds in Piezo2 knock-in mice. Consistent with measurements of mechanically activated currents in isolated sensory neurons essentially all cutaneous nociceptors, both fast conducting Aδ-mechanonociceptors and unmyelinated C-fibre nociceptors were substantially more sensitive to mechanical stimuli and indeed acquired receptor properties similar to ultrasensitive touch receptors in Piezo2 knock-in mice. Mechanical stimuli also induced enhanced ongoing activity in cutaneous nociceptors in Piezo2 knock-in mice and hyper-sensitive PIEZO2 channels were sufficient alone to drive ongoing activity, even in isolated nociceptive neurons. Consistently, Piezo2 knock-in mice showed substantial behavioural hypersensitivity to noxious mechanical stimuli. Our data indicate that ongoing activity and sensitization of nociceptors, phenomena commonly found in human chronic pain syndromes, can be driven by relieving the voltage-block of PIEZO2 ion channels. Indeed, membrane depolarization caused by multiple noxious stimuli may sensitize nociceptors by relieving voltage-block of PIEZO2 channels.


Asunto(s)
Ganglios Espinales , Canales Iónicos , Animales , Canales Iónicos/genética , Ratones , Ganglios Espinales/metabolismo , Nociceptores/fisiología , Nociceptores/metabolismo , Masculino , Mutación , Mecanorreceptores/fisiología , Mecanorreceptores/metabolismo , Umbral del Dolor/fisiología , Técnicas de Sustitución del Gen , Mecanotransducción Celular/fisiología , Ratones Transgénicos , Femenino , Potenciales de la Membrana/fisiología , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/metabolismo , Dolor/fisiopatología , Dolor/genética , Ratones Endogámicos C57BL
4.
Learn Mem ; 23(5): 195-207, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27084927

RESUMEN

The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees(Apis mellifera)we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees' CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus.


Asunto(s)
Encéfalo/metabolismo , Proteína de Unión a CREB/metabolismo , Condicionamiento Clásico/fisiología , Retención en Psicología/fisiología , Análisis de Varianza , Animales , Abejas , Encéfalo/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Dactinomicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Retención en Psicología/efectos de los fármacos , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos
5.
Nat Neurosci ; 24(1): 74-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33288907

RESUMEN

Fingertip mechanoreceptors comprise sensory neuron endings together with specialized skin cells that form the end-organ. Exquisitely sensitive, vibration-sensing neurons are associated with Meissner's corpuscles in the skin. In the present study, we found that USH2A, a transmembrane protein with a very large extracellular domain, was found in terminal Schwann cells within Meissner's corpuscles. Pathogenic USH2A mutations cause Usher's syndrome, associated with hearing loss and visual impairment. We show that patients with biallelic pathogenic USH2A mutations also have clear and specific impairments in vibrotactile touch perception, as do mutant mice lacking USH2A. Forepaw rapidly adapting mechanoreceptors innervating Meissner's corpuscles, recorded from Ush2a-/- mice, showed large reductions in vibration sensitivity. However, the USH2A protein was not found in sensory neurons. Thus, loss of USH2A in corpuscular end-organs reduced mechanoreceptor sensitivity as well as vibration perception. Thus, a tether-like protein is required to facilitate detection of small-amplitude vibrations essential for the perception of fine-grained tactile surfaces.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Mecanorreceptores/metabolismo , Sensación/fisiología , Vibración , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Noqueados , Mutación/genética , Células de Schwann/fisiología , Piel/inervación , Tacto/fisiología , Síndromes de Usher/genética
6.
Sci Transl Med ; 10(462)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305457

RESUMEN

The brush of a feather and a pinprick are perceived as distinct sensations because they are detected by discrete cutaneous sensory neurons. Inflammation or nerve injury can disrupt this sensory coding and result in maladaptive pain states, including mechanical allodynia, the development of pain in response to innocuous touch. However, the molecular mechanisms underlying the alteration of mechanical sensitization are poorly understood. In mice and humans, loss of mechanically activated PIEZO2 channels results in the inability to sense discriminative touch. However, the role of Piezo2 in acute and sensitized mechanical pain is not well defined. Here, we showed that optogenetic activation of Piezo2-expressing sensory neurons induced nociception in mice. Mice lacking Piezo2 in caudal sensory neurons had impaired nocifensive responses to mechanical stimuli. Consistently, ex vivo recordings in skin-nerve preparations from these mice showed diminished Aδ-nociceptor and C-fiber firing in response to mechanical stimulation. Punctate and dynamic allodynia in response to capsaicin-induced inflammation and spared nerve injury was absent in Piezo2-deficient mice. These results indicate that Piezo2 mediates inflammation- and nerve injury-induced sensitized mechanical pain, and suggest that targeting PIEZO2 might be an effective strategy for treating mechanical allodynia.


Asunto(s)
Hiperalgesia/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Dolor/metabolismo , Potenciales de Acción , Animales , Conducta Animal , Capsaicina , Hiperalgesia/complicaciones , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Canales Iónicos/deficiencia , Ratones Noqueados , Neuronas/metabolismo , Nocicepción , Nociceptores/metabolismo , Dolor/complicaciones , Dolor/patología , Dolor/fisiopatología
7.
Neuron ; 97(4): 806-822.e10, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29429934

RESUMEN

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.


Asunto(s)
Ganglios Espinales/fisiopatología , Inmunoglobulina G/administración & dosificación , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Dolor Nociceptivo/inmunología , Dolor Nociceptivo/fisiopatología , Células Receptoras Sensoriales/fisiología , Animales , Células Cultivadas , Femenino , Humanos , Inmunización Pasiva , Masculino , Mecanotransducción Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Células del Asta Posterior/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología
8.
Nat Neurosci ; 20(2): 209-218, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27941788

RESUMEN

The skin is equipped with specialized mechanoreceptors that allow the perception of the slightest brush. Indeed, some mechanoreceptors can detect even nanometer-scale movements. Movement is transformed into electrical signals via the gating of mechanically activated ion channels at sensory endings in the skin. The sensitivity of Piezo mechanically gated ion channels is controlled by stomatin-like protein-3 (STOML3), which is required for normal mechanoreceptor function. Here we identify small-molecule inhibitors of STOML3 oligomerization that reversibly reduce the sensitivity of mechanically gated currents in sensory neurons and silence mechanoreceptors in vivo. STOML3 inhibitors in the skin also reversibly attenuate fine touch perception in normal mice. Under pathophysiological conditions following nerve injury or diabetic neuropathy, the slightest touch can produce pain, and here STOML3 inhibitors can reverse mechanical hypersensitivity. Thus, small molecules applied locally to the skin can be used to modulate touch and may represent peripherally available drugs to treat tactile-driven pain following neuropathy.


Asunto(s)
Hipersensibilidad/metabolismo , Canales Iónicos/metabolismo , Mecanorreceptores/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Células Receptoras Sensoriales/metabolismo , Animales , Ganglios Espinales/metabolismo , Hipersensibilidad/tratamiento farmacológico , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Piel/inervación , Tacto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA