Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Autoimmun ; 144: 103175, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38387105

RESUMEN

SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Humanos , Linfocitos T CD8-positivos , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Inhibidores del Factor de Necrosis Tumoral , Vacunación , Anticuerpos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Anticuerpos Antivirales
2.
J Neurol Neurosurg Psychiatry ; 95(9): 855-864, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38548324

RESUMEN

BACKGROUND: Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS: In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS: Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION: These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Anticuerpos Monoclonales Humanizados , Vacunas contra la COVID-19 , COVID-19 , Antígenos HLA-DR , Esclerosis Múltiple , Humanos , Femenino , Masculino , ADP-Ribosil Ciclasa 1/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Vacunas contra la COVID-19/uso terapéutico , Vacunas contra la COVID-19/inmunología , Antígenos HLA-DR/inmunología , Adulto , Persona de Mediana Edad , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , SARS-CoV-2/inmunología , Activación de Linfocitos , Anticuerpos Antivirales/sangre , Vacunas de ARNm/uso terapéutico , Antígenos CD20/inmunología , Vacunación , Linfocitos T CD4-Positivos/inmunología , Glicoproteínas de Membrana
3.
J Allergy Clin Immunol ; 152(3): 689-699.e6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36858158

RESUMEN

BACKGROUND: CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES: We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS: Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS: In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION: Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.


Asunto(s)
Subgrupos de Linfocitos B , COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Diferenciación Celular
4.
Proc Natl Acad Sci U S A ; 117(7): 3693-3703, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32019882

RESUMEN

Glioblastoma is the most aggressive brain malignancy, for which immunotherapy has failed to prolong survival. Glioblastoma-associated immune infiltrates are dominated by tumor-associated macrophages and microglia (TAMs), which are key mediators of immune suppression and resistance to immunotherapy. We and others demonstrated aberrant expression of glycans in different cancer types. These tumor-associated glycans trigger inhibitory signaling in TAMs through glycan-binding receptors. We investigated the glioblastoma glycocalyx as a tumor-intrinsic immune suppressor. We detected increased expression of both tumor-associated truncated O-linked glycans and their receptor, macrophage galactose-type lectin (MGL), on CD163+ TAMs in glioblastoma patient-derived tumor tissues. In an immunocompetent orthotopic glioma mouse model overexpressing truncated O-linked glycans (MGL ligands), high-dimensional mass cytometry revealed a wide heterogeneity of infiltrating myeloid cells with increased infiltration of PD-L1+ TAMs as well as distant alterations in the bone marrow (BM). Our results demonstrate that glioblastomas exploit cell surface O-linked glycans for local and distant immune modulation.


Asunto(s)
Asialoglicoproteínas/inmunología , Glioblastoma/inmunología , Lectinas Tipo C/inmunología , Proteínas de la Membrana/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Asialoglicoproteínas/química , Asialoglicoproteínas/genética , Glioblastoma/genética , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Polisacáridos/química , Polisacáridos/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología
5.
Immunol Cell Biol ; 100(5): 312-322, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35233830

RESUMEN

The chemokine receptor CXCR3 is expressed on immune cells to co-ordinate lymphocyte activation and migration. CXCR3 binds three chemokine ligands, CXCL9, CXCL10 and CXCL11. These ligands display distinct expression patterns and ligand signaling biases; however, how each ligand functions individually and collaboratively is incompletely understood. CXCL9 and CXCL10 are considered pro-inflammatory chemokines during viral infection, while CXCL11 may induce a tolerizing state. The investigation of the individual role of CXCL11 in vivo has been hampered as C57BL/6 mice carry several mutations that result in a null allele. Here, CRISPR/Cas9 was used to correct these mutations on a C57BL/6 background. It was validated that CXCL11KI mice expressed CXCL11 protein in dendritic cells, spleen and lung. CXCL11KI mice were largely phenotypically indistinguishable from C57BL/6 mice, both at steady-state and during two models of viral infection. While CXCL11 expression did not modify acute antiviral responses, this study provides a new tool to understand the role of CXCL11 in other experimental settings.


Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL11/metabolismo , Virosis , Animales , Quimiocina CXCL10/genética , Quimiocina CXCL11/genética , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Inmunidad , Ligandos , Ratones , Ratones Endogámicos C57BL
6.
N Biotechnol ; 81: 33-42, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38493996

RESUMEN

We report the synthesis of a novel class of metal-complexing peptide-based polymers, which we name HyperMAPs (Hyper-loaded MetAl-complexed Polymers). The controlled solid-phase synthesis of HyperMAPs' scaffold peptide provides our polymer with a well-defined molecular structure that allows for an accurate on-design assembly of a wide variety of metals. The peptide-scaffold features a handle for direct conjugation to antibodies or any other biomolecules by means of a thiol-maleimide-click or aldehyde-oxime reaction, a fluorogenic moiety for biomolecule conjugation tracking, and a well-defined number of functional groups for direct incorporation of metal-chelator complexes. Since metal-chelator complexes are prepared in a separate reaction prior to incorporation to the peptide scaffold, polymers can be designed to contain specific ratios of metal isotopes, providing each polymer with a unique CyTOF spectral fingerprint. We demonstrate the complexing of 21 different metals using two different chelators and provide evidence of the application of HyperMAPs on a 13 parameter CyTOF panel and compare its performance to monoisotopic metal-conjugated antibodies.


Asunto(s)
Complejos de Coordinación , Maleimidas , Polímeros , Polímeros/química , Compuestos de Sulfhidrilo/química , Péptidos/química , Metales/química , Quelantes/química , Anticuerpos
7.
RMD Open ; 10(4)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375177

RESUMEN

OBJECTIVES: Methotrexate (MTX) is one of the most commonly used medications to treat rheumatoid arthritis (RA). However, the effect of MTX treatment on cellular immune responses remains incompletely understood. This raises concerns about the vulnerability of these patients to emerging infections and following vaccination. METHODS: In the current study, we investigated the impact of MTX treatment in patients with immune-mediated inflammatory disease on B and CD4 T cell SARS-CoV-2 vaccination responses. Eighteen patients with RA and two patients with psoriatic arthritis on MTX monotherapy were included, as well as 10 patients with RA without immunosuppressive treatment, and 29 healthy controls. CD4 T and B cell responses were analysed 7 days and 3-6 months after two SARS-CoV-2 messenger RNA vaccinations. High-dimensional flow cytometry analysis was used to analyse fresh whole blood, an activation-induced marker assay to measure antigen-specific CD4 T cells, and spike probes to study antigen-specific B cells. RESULTS: Seven days following two SARS-CoV-2 vaccinations, total B and T cell counts were similar between MTX-treated patients and controls. In addition, spike-specific B cell frequencies were unaffected. Remarkably, the frequency of antigen-specific CD4 T cells was reduced in patients using MTX and correlated strongly with anti-RBD IgG antibodies. These results suggest that decreased CD4 T cell activity may result in slower vaccination antibody responses in MTX-treated patients. CONCLUSION: Taken together, MTX treatment reduces vaccine-induced CD4 T cell activation, which correlates with lower antibody responses. TRIAL REGISTRATION NUMBER: NL8900.


Asunto(s)
Artritis Reumatoide , Linfocitos B , Linfocitos T CD4-Positivos , Vacunas contra la COVID-19 , COVID-19 , Metotrexato , SARS-CoV-2 , Humanos , Metotrexato/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Masculino , Persona de Mediana Edad , Femenino , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anciano , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Adulto , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Antirreumáticos/uso terapéutico , Vacunación
8.
Elife ; 112022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838348

RESUMEN

Background: Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods: The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results: OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions: Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding: This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).


Asunto(s)
Artritis Reumatoide , COVID-19 , Esclerosis Múltiple , Vacunas Virales , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , Artritis Reumatoide/tratamiento farmacológico , Linfocitos T CD8-positivos , COVID-19/prevención & control , Humanos , Inmunosupresores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , SARS-CoV-2 , Vacunación , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA